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Abstract: This article presents the study of three-dimensional, stagnation flow of a Powell-Eyring fluid towards an off-

centered rotating porous disk. A uniform injection or suction is applied through the surface of the disk. The Darcy law of 

porous disk for Powell-Eyring fluid is also obtained. The governing partial differential equations and their related 

boundary conditions are converted into ordinary differential equations by using a suitable similarity transformation. The 

analytical solution, of the system of equations is solved by using homotopy analysis method. The convergence region of 

the obtained solution is determined and plotted. The effects of rotational parameter, porosity of the medium, the 

characteristics of the non-Newtonian fluid and the suction or injection velocity on the velocity distributions is shown by 

graphical representation. 
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1. Introduction 

The non-Newtonian fluids attracted the attention of researchers due to its applications in industries and 

engineering. The work in non-Newtonian fluid increased during the past few years. The constitutive equations 

of non-Newtonian fluids are more complicated and higher  

order because of nonlinear relationship between stress and strain. Examples of such fluids include slurries, 

shampoo, printer ink, gum solutions, nail polish, whipped cream, toothpaste, grease, cosmetic products, 

custard, butter, blood plasma and many others. Hence much attention has been devoted to study the different 

models of non-Newtonian fluids. Powell-Eyring fluid model [1-5], a complex mathematical model developed 

by Powell and Eyring in 1944. One of the interesting features of Powell-Eyring fluids is that, the stress 

constitutive relation of such fluids can be derived using the kinetic theory of liquids. This model correctly 

reduces to Newtonian behavior for low and high shear rates [6]. Islam et al. [7] calculated the slider bearing 

lubricated of Powell-Eyring fluid by homotopy perturbation analysis method. Zueco et al. [8] studied the 

numerical effect of pulsatile flow of Powell-Eyring model and Patel et al. [9] examined the numerical solution 

of Powell-Eyring model past a wedge. Javed et al. [10] observed the effect of boundary layer flow of Powell-

Eyring fluid over a stretching sheet. Akbar et al. [11] studied the Powell-Eyring peristaltic fluid flow with 
mass and heat transfer. Hayat et al. [12] investigated the flow and heat transfer of Powell-Eyring fluid over a 

continuously moving surface in the presence of a free stream velocity. 

The fluid flow over an infinite rotating disk was first studied by Von-Karman [13] which then have got so 

much importance due to its significant applications in many industrial and engineering fields, for example 

spin-coating, computer storage devices, rotational viscometer, centrifugal machinery, pumping of liquid metals 

at high melting point, crystal growth from molten silicon, turbo machinery and most importantly aerodynamic 

applications. Millsaps [14] studied the heat transfer by laminar flow from a rotating disk. Ahmadpour and 

Sadeghy [15] investigated the Swirling flow of Bingham fluids above a rotating disk. Rashidi and 

Shahmohamadi [16] calculated the analytical solution of three dimensional Navier-Strokes equation for the 

flow near an infinite rotating disk. The problem of MHD flow of Powell-Eyring fluid over an infinite rotating 

disk under the presence of magnetic were found by Khan et al. [17]. The unsteady ferro fluid flow due to a 

rotating disk was considered between highly oscillating magnetic field and magnetization, the effect of higher 

angular frequency negative the rotational viscosity resulting in faster convergence of velocity components as 

compared to the ordinary case where rotational viscosity is zero was founded by Ram and Bhandari [18]. 
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The non-alignment in the flow and disk axis makes it momentous to study the complex flow pattern of the 

fluid over rotating disk. The model of a stagnation point flow towards an off centered rotating disk was first 

proposed by Wang [19]. Dinarvand [20] calculated the analytic solutions of problem [20] by homotopy 

analysis method, he noticed that the performance of HAM solution for velocity functions shows the good 

agreement with the pervious study. Erfani and Rashidi [21] calculated the solution of stagnation flow toward 

an off-centered rotating disk by using the DTM–Padé technique, which is the combination of the differential 

transform and Padé approximation method. Nourbakhsh et al. [22] re-examined the analytical solution for off-

centered stagnation flow towards a rotating disk by applying a semi-exact method with two auxiliary 

parameters to obtain the solution, numerical computation has also been made for the verification of the study. 

Khan et al. [23-24] extended the work of Wang [19] by finding the analytical solutions of non-Newtonian 

fluids like Jeffery and couple stress fluid. 

In all the articles highlighted above, porous medium was not taken into account. The non-Newtonian study 

through a porous medium is an interesting topic these days, especially with the introduction of the modified 

Darcy’s law. Flow through a porous medium has practical applications, especially in geophysical fluid 

dynamics. Some of the examples of natural porous media are limestone, beach sand, the human lung, 

sandstone, wood, rye bread, bile duct, small blood vessels and gall bladder with stones. Number of researchers 

employing Darcy’s law, recently, Shahzad et al. [25] investigated the effect of porous half space on forth order 

fluid, also the modified Darcy’s law is considered and its flow characteristics are also taken into account. Tan 
and Masuoka [26-27] extended the Stokes’s first problem on the bases of modified Darcy’s law for the second 

grade and Oldroyd-B fluid in a porous half space with a heated flat plate. Hayat et al. [28] calculated the MHD 

flow of a non Newtonian Maxwell fluid which is constructed in a rotating frame through a porous medium. 

Attia [29-30] investigated the viscous non-Newtonian fluid above an infinite rotating porous disk in a porous 

medium with heat transfer, a uniform injection /suction is applied through the surface of the disk and he also 

studied the unsteady flow and heat transfer of viscous fluid with temperature-dependent viscosity due to a 

rotating disk in a porous medium.  

The objective of this present study is to explore the effect of three dimensional non Newtonian Powell- Eyring 

fluids at stagnation point towards an off-centered rotating porous disk. A uniform suction or injection is applied 

through the surface of the porous disk. The expression for Darcy resistance of Powell-Eyring fluid is also 

obtained. The ordinary differential equations (ODEs) are solved by non perturbation technique HAM. The 

influence of fluid parameters, rotating disk parameter porosity and permeability of the porous medium on the 

velocity functions are presented in graphical form.   

2. Basic Equations 

The flow is governed by the continuity and momentum equation in the forms 
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The three scalar momentum equations are  
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In Eqs. (6)- (8) the subscripts yx, and z  indicate the components in the -yx-, and -z directions. Whereas 

yx R,R
and zR

 are the -yx-, and -z components of the Darcy’s resistance R . 

3.  Problem Formulation 

Let us assume the steady three-dimensional rotational flow of an incompressible Powell- Eyring fluid 

at stagnation point flow over an off-centered rotating porous disk. The flow axis of this disk is parallel to z  

axis at a distance s . The radius of disk is infinite, and it is moving with an angular velocity   in a porous 

medium. A uniform injection or suction is applied at the surface of the disk for the entire range from large 

injection velocities to large suction velocities. Let 
vu,

and w are the velocity components along 
yx,

and z

directions, respectively. The stress tensor in an Eyring-Powell fluid is given by (Powell and Eyring, 1944; 
Steffe, 1996). The geometry of the problem is presented below in Fig.1 

 
Fig 1. Geometry of the Problem. 

 

The three scalar momentum equations are of Eyring-Powell fluid is expressed as follows: 
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where 


 =

is the kinematic viscosity. The boundary conditions near the disk and far from the disk are 
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( ) ,        ,          , 0wwsxvyu =−=−=
                                  (13) 

, 2  zawy,        a  vx,        au −===                                                                     (14)  

where a represents the strength of the stagnation flow. The similarity transformations presented by Wang [19] 

are 

( ) ( ) ( ) ksygfaxu   +−=
, 

( ) ( ) ( ) hsxgfayv ++=
,  

( ) faw 2−= , 
 az=

                   (15) 

Using the similarity transformations of Eq.(15) in Eqs. (9)-(12), the continuity equation satisfied whereas the 

governing partial differential equations are reduced to the following form: 
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And the boundary conditions transformed to: 
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primes denote the differentiation with respect to  .  The pressure p can be recovered by 
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where 0p
 is the pressure at the origin and  is the fluid density.  The shear stress of the Powell- Eyring fluid 

on off centered rotating disk is given as follows 
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The shear stress at the center is zero, by solving Eq. (24)-(25) for 
( )y,x

 we can obtain the shear center on 

the surface of disk. The torque of the disk experienced by radius R is given as 

 

( )  −=
R

xy drdrSST
0

2

0

2   sincos



 ,                                                                                      (26)  

where 
( ),r

are cylindrical coordinates. Since 
sCosrx −=  

 and Sinry  = , the torque can be found as:  
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which remain unchange by the flow axis and non-aligned disk. The system of ordinary differential equations, 

of Powell-Eyring fluid is presented by Eqs. (16)-(19) are transformed into the Navier-Stokes equations of 

stagnation flow [19] by keeping the paramertes of Powell-Eyring fluid (
  and ,

), porosity parameter ( M

) and Suction/Injection parameter 0V
equivalent to zero. 
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4. The HAM solution of the problem 

  For HAM solution, following initial guess of 
)(),(),(  kgf

 and 
)(h

 has been selected: 

( ) ,1
~

00

 −+−+= eVf ( ) ,~  −= eg0 ( ) ,
~  −= ek0 ( )  −= eh0

~
                    (28) 

and choose the auxiliary linear operators: 

 


−




=

3

3

1 ][ fL

  

1],,[
2

2

2 −



=


hkgL

                      (29) 

such that 

( ) ( ) 0              ,0 543211 =+=++ −−  ececLececcL 2           (30) 

)5,....2,1( =ici  are constants. The zeroth-order deformation, problem of non auxiliary parameters 

4321  and ,, 
 are formulated below: 

( ) ( ) ( )  ( ) pgpfpfpfLp ,~),,(
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~

,
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1 1101  =−− 
                                                                  (31) 

 

( ) ( ) ( )  ( ) ( ) η,pg,η,pfp gpgLp ~  
~~,~1 2202 =−− 

                                                                  (32) 

 

( ) ( ) ( )  ( ) ( ) ( ) ( ) phpkη,pg,η,pfp kpkLp ,
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subjected to the boundary conditions 
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 10, p
 is the embedding paramerter and 321 ,, 

 and 4
 are the non-linear operators expressed as: 
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For 0 =p , we have the initial guess approximations 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).
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0000  hhkkggff ====
        (40) 

When 
,1=p
 the Eqs. (31)- (34) are similar as (16)-(19) respectively, so we obtain the final solutions at 

1=p
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Hence the rise in p  from 0 to 1 is the process of continuous variation of velocity functions  

( ) ( ) ( ) ( )phpkpgpf  ; and  ; , ;, ; 
 from their initial guess

( ) ( ) ( ) ( ) 0000  amd , hkgf
 to the final 

solution
( ) ( ) ( ) ( ) hkgf  amd ,

. This type of continuous variation is known as deformation in topology so 

that we call the system of Eqs. (31)-(34), the zeroth order deformation equation. Next, the 
thm - order 

deformation equations as follow 

( ) ( )  ( ) mmmm RffL ,1111  =− −                                                                                           (42) 

 

  ( ) mmmm RggL ,2212  )()( =− −                                                                                           (43) 
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( ) ( )  ( ) mmmm RkkL ,3312  =− −                                                                                           (44) 
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with the boundary conditions 
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and 








=

2     , 1

1     , 0

m

m
m

  
 

By the above process of HAM defined above, it is quite easy to calculate the set of linear Eqs. (42)-(45), one 

after the other in the order m, particularly by any computational software. Here we computed our calculations 

with the help of MATHEMATICA 10. 

5. Results and discussion 

5.1 Flow analysis: 

 The present study has been made to observe the influence of roational parameter  , fluid parameters 

( )  and ,
of Powell Eyring fluid, suction/injection parameter 0V

and porosity parameter on radial velocity 

function
)(f 

, azimuthal velocity function
( )g

 and on induced velocity function 
( ) ( ). and  hk

  

Fig. 1 demonstrates the effect of radial parameter  at various values. The increasing values of  

shows the increasing effect on radial velocity profile
( )f 

. All the values of converges to 1, due to the 

boundary condition of Eq. (15). Fig. 2 shows the combine effect of fluid parameters  and on velocity 

function
)(f 

, it clearly observed that the influence of fluid parameter  on
( )f 

 expresses the slow 

increasing effect as compare to rotational parameter  whereas  initially shows the deceleration on 
)(f 

 

near the disk and after the point 2.4 it start accelerating. In Fig. 3 fluid parameters 


 display the decreasing 

effect on velocity component
( )f 

. The porosity parameter M also expresses the decreasing effect whereas 

suction/injection parameter shows the acceleration on
( )f 

 just like rotational parameter  (see Fig 4 and 5).   

The influence of parameters  0 and ,,,, VM
on azimuthal velocity profile

( )g
 can be observed 

from Figs. 6-10. It can be clearly monitor  from Fig. 6 that the roational parameter   expresses the deceleration 

on azimuthal velocity function
( )g

 . Same as roational parameter  , fluid parameters 
  and 

also shows 

the deceleration on increasing values. As comppare to  the decreasing rate of 
  and 

 is slow (see Fig 7). 

In Fig. 8 the fluid parameter 


 intimate quite different effect as compare to other parameters, it first illustrate 

the acceleration effect and after the point 2.1  it start decelerating on azimuthal velocity
( )g

.  Figs 9 and 10 

depicted the impact of porosity paramter and suction/injection paratmeter, both expresses the decline on 

increasing values.   
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Figs. 11-15 explicate the outcome of parameters 0 and ,,,, VM
 on induced velocity function

( )k
 . Parameter   and express the similar behaviour, they manifest the speeding up in velocity 

( )k
 on 

increasing values of parameters (see Fig 11 and 12). If we observe closely boht the Figs we can see that the 

behabiour of induced velocity function 
( )k

 is same but   accelerates rapidly as compare to  on increasing 

values of parameters. The non-dimensional parameter   accelerates on high values, but on small values it 

doesn’t  show any impact on 
( )k

. Fig. 12 also examine the impact of parameter   on 
( )k

 exponential 

decline near the disk and then starts rising from point 4.2 . The fluid parameter   is a decline function of 

induced velocity component 
( )k

(see Fig. 13). In Fig. 14 porosity parameter displays both type of effects, 

decreasing near the disk and after certain point it shows acceleration.  The influence of Suction/Injection 

parameter 0V
is observed in Fig. 15 which determine the fall off on velocity component

( )k
. 

The impacts of induced velocity function 
( )h

 perceived on different values of paramters are 

described in Fig 16-20. It can be seen from Fig. 16 that the rotational parameter  deceleretes the induced 

velocity component
( )h 

. Non dimensional paramter shows the creaping decline impact on
( )h 

whereas 

fluid parameter   displays the positive impact on the induced velocity 
( )h

 (see Fig. 17). Fig 18 appears 

both positive and negative effect of  on
( )h 

, first it display the positive effect near the disk and after 

reaching the point 1.4 it start showing the negative effect on velocity component
( )h 

. The influence of 

porosity parameter  M  and Suction/Injection parameter is investigated in Fig. 19 and 20 which 

demonstrates the negative impact on velocity 
( )h

. 

5.2 Convergence analysis: 

The Fig. 21 exhibit the convergence region of curve−  for the velocity functions 
),0(f  ),0(g

)0( and )0( hk 
.It can be easily seen that the valid range for the values of 4321  and  , , 

 are 

0.10.1 1 − 
,

5.00.1 2 − 
,

4.12.1 3 − 
,

8.06.1 4 − 
 . 

 

Fig. 1: The Effect of on velocity profile
( )f 

 at

05.0 and  10  10  0.1,  , 0.1  ,1.0 0 −====== .V,.M
 

 

 

Fig. 2: The Effect of


and on velocity profile
( )f 

 at 

05.0 and  10  10 4,, 0.1 ,1.0 0 −====== .V,.M
 

https://www.google.com.pk/search?biw=1517&bih=741&q=define+explicate&sa=X&ei=xcl9VO3QF8Xdati3gLAJ&ved=0CFsQ_SowAA
https://www.google.com.pk/search?biw=1517&bih=741&q=define+manifest&sa=X&ei=xcl9VO3QF8Xdati3gLAJ&ved=0CEkQ_SowAA
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Fig. 3: The Effect of


on velocity profile
( )f 

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.M
 

 

 

Fig. 4: The Effect of M on velocity profile
( )f 

 at 

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.
 

 

Fig. 5: The Effect of 0V
on velocity profile

( )f 
 at

05.0 and 10M  10  0.1,, 0.1 ,4 −====== .,.
 

 

 

Fig. 6: The Effect of on velocity profile
( )g

 at

05.0 and  10  10  0.1,  , 0.1  ,1.0 0 −====== .V,.M
 

 

 

Fig. 7: The Effect of


and on velocity profile
( )g

 at

05.0 and  10  10 4,, 0.1 ,1.0 0 −====== .V,.M
 

 

 

Fig. 8: The Effect of


on velocity profile
( )g

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.M
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Fig. 9: The Effect of M on velocity profile
( )g

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.
 

 

 

Fig. 10: The Effect of 0V
on velocity profile

( )g
 at

05.0 and 10M  10  0.1,, 0.1 ,4 −====== .,.
 

 

 

Fig. 11: The Effect of on velocity profile
( )k

 at

05.0 and  10  10  0.1,  , 0.1  ,1.0 0 −====== .V,.M
 

 

 

Fig. 12: The Effect of


and on velocity profile
( )k

 at

05.0 and  10  10 4,, 0.1 ,1.0 0 −====== .V,.M
 

 

 

Fig. 13: The Effect of


on velocity profile
( )k

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.M
 

 

 
 

Fig. 14: The Effect of M on velocity profile
( )k

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.
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Fig. 15: The Effect of 0V
on velocity profile

( )k
 at

05.0 and 10M  10  0.1,, 0.1 ,4 −====== .,.
 

 

 

Fig. 16: The Effect of on velocity profile
( )h

 at

05.0 and  10  10  0.1,  , 0.1  ,1.0 0 −====== .V,.M
 

 

 

Fig. 17: The Effect of


and on velocity profile
( )h

 at

05.0 and  10  10 4,, 0.1 ,1.0 0 −====== .V,.M
 

 

 

Fig. 18: The Effect of


on velocity profile
( )h

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.M
 

 

 

Fig. 19: The Effect of M on velocity profile
( )h

 at

05.0 and 10  10  0.1,, 0.1 ,4 0 −====== .V,.
 

 

 

Fig. 20: The Effect of 0V
on velocity profile

( )h
 at

05.0 and 10M  10  0.1,, 0.1 ,4 −====== .,.
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 Fig. 21: The   of 
( ) ( ) ( )000 k,  g,  f 

 and 
( )0h

 

 

 

6. Conclusion 

 In this present study the nonlinear problem, the off centered stagnation flow of a three-dimensional 

Powell-Eyring fluid towards a rotating porous disk. The non perturbation method HAM is used to calculate 

the analytical solutions of the governing ordinary differential equation system. The impact of the parameters 

is examined on the radial, azimuthal and induced velocity function. The flow analysis has been made by 

graphical form. The main outcomes are summarized as follows. 

• The impact of 0  , V
and  express the acceleration on the velocity function

f 
.  

• The influence of fluid parameter 
 

exhibits the decline effect on velocity function
f 

. 

• The porosity parameter displays the negative impact on velocity function
f 

. 

• The variations of parameter, , ,  , M 0V
and   are qualitatively similar on the velocity function g . 

• The non dimensional parameters  and  shows similar increasing effect on k . 

• The parameter gives exponential decrease near the disk and then starts accelerating on the velocity 

function k . 

• The Suction/Injection parameter shows the negative influence on the velocity function k . 

• 0α,  M,  V
and  demonstrate the fall on the velocity function ,h whereas presented the rise on the 

velocity function .h  

• The fluid parameter
 

shows both positive and negative behavior on velocity function .h  
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