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Abstract: The foam materials, by construction and by characteristic properties (low density, large 

deformations, great flexibility, Poisson ratio practically zero etc.), are widely used in many and various domains. 

The numerical simulation of the foam material behavior raises some difficulties, which can be impassable under 

certain circumstances. This paper presents some of our researching results in numerical modeling of foam 

materials, which can be very useful for those interested in numerical modeling of the foam materials. Numerical 

modeling used by the authors is based on the finite element method (FEM) and on the element-free Galerkin 

(EFG) method. The results are presented in a comparatively way and they also present how some usually running 

errors can be avoided. The conclusions and the results are considered by the authors very useful in modeling of 

the foam materials and in choosing of the most fitted method too. 
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1. Introduction 

The foam materials represent a special kind of materials which are used more and more in many 

fields (industry, transport, innovation etc.) owing to their properties and their behavior (specially under 

dynamic loads). The properties and the behavior of the foam materials come from their construction, 

being materials with a spongelike, cellular structure. This material structure makes them with a high 

deformation rate, very flexible, with a large energy absorption capacity and with a low density. Of 

course, such materials have lower elastic characteristics comparatively with others materials, but the 

Poisson ratio practically goes to zero. All these aspects make the numerical simulation of such materials 

behaviour a difficult task. 
Some one could say that the foam materials have a similar behaviour with hyperelastic 

materials; the comparison of the foam materials with the hyperelastic materials can be made and it can 

be true, only the mathematical formulation is concerned, otherwise there are essential differences. For 

hyperelastic materials, the main working conditions consist in tension and Poisson’s ratio is near 0.50, 

while for foam materials the main working conditions consist in compression and Poisson’s ratio is near 

zero. The tests for these materials can be similar and the methodology also, but for the foam materials, 

the compression test is the main test  Owing to the large deformations, the numerical calculus is a 

nonlinear one, including the both nonlinearities: material and geometric nonlinearities. 

Starting from these aspects, special material models were designed. About using of these 

material models, about using of different numerical methods, someone can find information which can 
be useful in solving of similar problems. 

 

2. Mathematical Approaching Fundamentals of Foam Materials 

Starting from the observation that foam materials have Poisson’s ratio value about zero 
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(practically 0 ), knowing that the volume strain e  of the specimen, in the case of monoaxial stress 

state, has the definition relation, 
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where 0VVV   is the volume variation, V  is the volume at a testing time, 0V  is the initial volume,   

is the Poisson’s ratio and   is the strain on the testing direction, we can see the link between physical 

behavior and the value of Poisson’s ratio; hyperelastic materials are practically incompressible, so 

0V , but the relation (1) shows that this is possible only if 5.0 ; foam materials have a large 

deformation when volume strain e  goes near to 1.0; in these conditions the relation (1) shows that the 

Poisson’s ratio has to go to zero value and numerically, e . 

The general mathematical method for the studing of the strains, stresses, displacements and other 

parameters, consist in finding of a strain energy function, which then, by mathematical operations, 

allows the calculation of the desired parameter. All these functions and parameters are expressed in 

terms of  the principal stretches 321 ,,   which are defined like in the Figure 1. 

 

  
Figure 1: Uniaxial test of compression 

 

The principal stretch ratios ( i ) are defined according to the relation (2). Both in stretching and 

compression, these parameters i  have only positive values, the maximum value being 1.0.  
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By testing, the dependence between compression force and stretch ratio can be obtained; the 

allure and commune values, for a polymeric foam, can be seen in the Figure 2. How the stresses depend 

on the strains, in a uniaxial compression test of a polymeric foam, can be watched in the Figure 3. 

By an uniaxial test (Figure 1), the principal true stress   can be written in terms of principal 

engineering stress (
E ) and principal stretches ( i ): 
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The strains can also be expressed in terms of  principal stretches; for the principal direction 1: 
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From relation (5), by generalization, relation (6) can be written: 

1 ii                                                                                                                                                  (6) 

 
Figure 2: Stress versus stretch ratio, for a compression test  

 

 
Figure 3: Stress versus strain , for a compression test 

 

The expression (6) is named in literature Biot strain or co-rotated engineering strain. In 

nonlinear analysis, with material nonlinearities and large deformations, others used strain measures are 

also used, as functions of principal stretch rations, like Green strain, Almansi strain and log (true) strain, 

as the relations (7) to (9), respectively , shows. 
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The use of  principal stretch rations ( 321 ,,  ) is preferred because these are invariant with 

respect to both the coordinate system and the strain measure. So, as it can be seen )( f  and   has 

to increase monotonically with  , for to be valid for mathematical operations (Taylor serie development 

etc.)  By above reasons, a strain energy function ( ) is also expressed in terms of  321 ,,  .  

Such an energy function, )( , would have to full fill some conditions, by mathematical and 

physical reasons: 

- to be zero for a ground state, when 1321   ; 

- to be symmetric in i ; 

- to be  always greater or equal then zero,   0 ; 

- to be a convex function. 

The energy function has to be a convex one, for stability reason, so any change in deformation 

field will produce an unique change in the stress field. Let’s consider the energy function 

),,()( 321   ; the variation of this function, with respect to i  can be written: 
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The specific behaviour of the foam material is reflected by the stress-strain relationship. Such a 

typical curve is presented in the Figure 4. Three zones are noticed in the compressive stress-strain 

relationship of a foam material: Zone 1 is an initial region where the behavior is linear elastic, then Zone 

2 is represented by a flat plateau (like an yielding zone) and Zone 3 (densification zone) when relation 

between stress and strain is an exponential one.  

In the first zone, foams have some stiffness due to the strength of the matrix material itself. The 

curve is fairly linear and the stretch ratio of   has the value range from 0.95 to 1. This zone is called the 

initial stiffness of the foam. The yielding plateau (Zone 2) is the result of the gaseous component in 

foam structure. The gas exits the foam through the open pores or channels. In closed cell foams, the gas 

is compressed. The stresses remain at about the same level, until   reaches a value of 0.4−0.5, when by 

bending the cell walls collapse and a new zone appears. The Zone 3 (densification phenomenon) begins 

when the gas pressure is high enough to rupture the cell wall thereby releasing the gas to the 

atmosphere. 

 

 
Figure 4: A typical strain-stress curve of a material foam 
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Figure 5: The influence of the strain rate upon stress-stretch ratio 

 

It is very important that the stress-strain curve to cover the strain range occurring in reality; 

otherwise, some characteristic errors can appear and the numerical simulation will be stoped. In these 

cases, some possibilities for avoiding such problems exist and these will be presented in this paper later. 

Like many others materials, the foam materials are also sensitive to the strain rate 
dt

d
  . By 

an uniaxial compressive test, at different strain rates, the stress-stretch ratio curves have allures 

presented in the Figure 5. Because of material nonlinearities and because of large deformations, nodal 

stresses and displacements are very difficult to be calculated by “classical” way of the finite element 

analysis.  By this reason, such parameters are calculated starting from the energy function, )( and 

using some stress measures, next to Cauchy stress tensor; so, first and second Piola-Kirchhoff stress 

tensor, Jaumann stress tensor and others tensors or connection matrixes are used. 

 

3. Material Models 

Because of special properties of the foam materials (a part of them synthetically presented 

above), many professional numerical analysis programs offer some foam material models These 

material models have the same fundamentals which, in a synthetic way, will be presented below.  

For all foam material models, the main theoretical issue is the energy functional )( . So, 

Hill’s energy functional (one of the most used) is: 
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where k  is the number of terms in the function, n , m  and m  are material constants, 321 ,,   are the 

principal stretches or the stretch ratio in the corresponding principal direction 1, 2, 3 and J  is the 

relative volume (Figure 1): 
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The principal Kirchhoff stress components can be determined [3] by the following relation 

coming from relation (11): 
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The Cauchy stress components ( ij ) are then obtained: 

ijij J   1                                                                                                                                           (15) 

where ij  are the components of the standard Kirchhoff stresses obtained by the formula [2]: 
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K
kljlikij qq                                                                                                                                        (16) 

The components ijq  are the elements of the orthogonal tensor containing the eigenvectors of the 

principal basis (coordinates corresponding with the principal stresses). Many other details are given in 

documentation of the used program. In the material library of the Ls-Dyna program, some material 

models for foam materials exist: Low Density Urethane Foam, MAT_FU_CHANG_FOAM, 

MAT_HILL_FOAM, MAT_VISCOELASTIC_HILL_FOAM and Simplified Rubber/Foam. A special 

attention has to be paid to the selecting of the material model; the material properties have to be known 

but in the same time the goal of using of foam material has to be analyzed. 

 

4. Used Numerical Methods 

An impact problem in which the target is of foam materials can by easily studied using numerical 

methods. First of all, we all are thinking to the Finite Element Method (FEM).  

This method is well known and large used in the world and in our country too. Nowadays, this 

method don’t is a single one. Among the numerical methods, which appeared, which have been 

developed and which have been implemented in the most powerful professional programs, the Element 

Free Galerkin (EFG) method is one of them. This numerical method belongs to a large category of 

numerical methods, named mesh free methods. Unfortunately, in our country these numerical methods 

are few known and fewer used.  Some theoretical fundamentals regarding Element Free Galerkin (EFG) 

method is presented below, because the FEM fundamentals are generally well known.  

 
4.1 Fundamentals of the Element Free Galerkin Method 

The weighted residual method is a general method for obtaining approximate solutions for 

ordinary differential equations (ODEs) or partial differential equations (PDEs). Many numerical 

methods like collocation method, subdomain method, least squares method, moment method and 

Galerkin method are based on the general weighted residual method.  

The Element Free Galerkin (EFG) method is based on Galerkin method with Moving Least 

Squares (MLS) interpolants. The approximation by MLS was devised by mathematicians: Lancaster and 

Salkausdas 1981 and others [1], [7]. This method is categorized as a method of series representation of 

functions and it is widely used in mesh free methods. 

Let’s consider an unknown scalar function of a field variable )(xu , in a domain  . The 

moving least squares approximation )(xu h
, of the variable )(xu , is defined so: 
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or, in a matrix form, 

a(x)(x)pxu Th )(                                                                                                                                 (18) 

where )(xp  is the basis function (a complete one) of the spatial coordinates and m  is the number of the 

basis functions. In the relation (18), )(xa  is a vector of coefficients, which can be written so: 

 )(......)()()( 21 xaxaxaxa m
T                                                                                                     (23) 

 

The components (elements) of the vector )(xa  are functions of x . These components 

(polynomial coefficients) can be determined by minimizing the following functional ( J ) 
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where n  is the number of nodes, in the support domain of x , for which the weight function 

0)(  ixxW


, and iu  is the nodal parameter of u , at ixx  . 

The minimizing of the functional ( J ), requires: 
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so, the following set of linear matrix relations are obtained: 

 

sUxBxaxA  )()()(                                                                                                                                (26) 

where sU  is the vector of nodal field function parameters, for all nodes in the support domain, )(xA is 

the weighted moment matrix and )(xB  is a matrix resulting from relation (26). All these matrixes are 

written so: 
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Figure 6: The approximation function and the nodal parameters, in MLS method 

 

Usually, the number of nodes n , used in MLS method, is much larger than the number of 

unknown coefficients m , the approximation function )(xu h
 does not pass through the nodal values, like 

in the Figure 6.  By solving the matrix equation (26), the vector of coefficients )(xa  is obtained: 

sUxBxAxa   )()()( 1
                                                                                                                           (30) 

Substituting the relation (30) into relation (17), we write: 
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where )(x  is the vector of shape functions, corresponding to the n  nodes of the support domain of the 

point x : 

 )(.....)()()( 21 xxxx n
T                                                                                                          (32) 

The shape functions )(xi  , for 
thi  node can be written in a discrete form or in a matrix form, as 

the relation (33) shows. 
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As we can see analyzing the above relations, in the MLS method the coefficients a  are functions 

of x  , by which the approximation move continuously. A properly choosen of the shape function makes 
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this to be continue in the entire global domain  . 

As the Ls-Dyna program is concerned, a cubic B-spline weight function is used. 

 

5. Numerical Examples 

Consider a foam plane plate with a diameter of 60 mm and its thickness of 25 mm, being fixed on 

a rigid surface. This circle foam plate is impacted by a sphere with a diameter of 40 mm and a weight of 5 

kg having an impact velocity of 5 m/s. 

The paper presents the numerical results obtained by two methods: FEM and Element-Free 

Galerkin method, for an analysis time of 0.003 seconds. 

 

                          
             a)     b)          c) 

Figure 7: Models for analysis by FEM and EFG method 

 

In the Figure 7, three models with finite elements are presented: a) a 3D model, b) a quarter of a 

3D model and c) a 2D axisymetric model. The same models are used for the EFG method. 

 

 
Figure 8: The initial stress-strain curve of the foam material 

 

By the reason of computer time, the sphere was partial modeled, but using a special procedures of 

the program, the impact mass was the same weight (5kg). 

The constitutive law of the foam is graphically presented in the Figure 8. All the results presented 

below are obtained by using the Ls-Dyna program. 

The great discrepancy between the rigidity of the foam and the impactor makes the contact not to 

work, appearing the errors “negative volume” & “complex sound speed” and running stops.  

Using the Ls-Dyna program, this inconvenience could be overpassed by two ways: by extending 

the curve stress-strain of the foam material, or giving a positive value (around 1.0% of impactor Young 

modulus) to the parameter KCON (of material model) and using the option SOFT=1 (contact 

formulation)  
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Table 1: Running Results for 3D FE Modeling 

Test 

No. 

Initial 

curve 

SOFT 

0  

SOFT 

1 

KCON 

0 

KCON 

2000 

HGID 

0 

HGID 

1 
Effects 

1 YES YES --- YES --- YES --- Error 

2 YES YES --- YES --- --- YES Error 

 

Our researching lead to the conclusion that taking into account of the hourglass energy is not 

important, having a less value towards the kinetic or internal energy. Its influence is a little one. Then, 

the hourglass energy cannot be taken into account when EFG method or any mesh free method is used. 

The results obtained by using 3d models with FE and EFG are synthetically presented in the 

below tables. These results, presented in Table 1 and in Table 2, show us that using the EFG method 

makes those errors to be avoided and the quantitative values to be in according to the reality. 

 
Table 2: Running Results for 3D EFG Modeling 

No. 
Initial 

curve 

SOFT 

0  

SOFT 

1 

KCON 

0 

KCON 

2000 

HGID 

0 

HGID 

1 
Effects 

1 YES YES --- YES --- YES --- O.K. 

2 YES YES --- YES --- --- YES O.K. 

 

In the Figures 9, 10, 11, and 12, the time evolution of the kinetic energy, velocity, displacement 

and respectively the contact force of the impactor are presented, using FEM or EFG method. 

 

 
Figure 9: Time evolution of the impactor kinetic energy, by EFG method  
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Figure 10: Time evolution of the impactor velocity, by EFG method 

 
Figure 11: Time evolution of the impactor displacement, by EFG method 

 

 
Figure 12: Contact force between impactor and foam plate, by FEM 
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Some deformed states, obtained with 3D and 2D modeling, by FEM and by EFG are presented in 

the Figure 13 (a-3D FEM, b-3D_1/4 EFG, c-2D EFG).  Practically, no diferences exist. 

 

       
a)                b)    c) 

Figure 13: Deformed state by FEM (a), by EFG (b) and by 2D EFG (c) 

 

The Table 3 comparativelly presents the results obtained by modeling with FE, but using the 

initial curve (Figure 7) and the extended curve presented in the Figure 14. The difference between 

impactor displacements UY  (Tests  no. 3 and 4) represents the influence of the hourglass energy. 

 

 
Figure 14: The extended constitutive foam curve 

 
Table 3: Comparative Results for FE Analysis and Two Types of the Constitutive Curve 

Test 

No. 

Initial 

curve 

Extended 

curve 

SOFT 

0  

SOFT 

1 

KCON 

0 

KCON 

2000 

HGID 

0 

HGID 

1 
Effects 

1 YES --- YES --- YES --- YES --- Error 

2 YES --- YES --- YES --- --- YES Error 

3 --- YES YES --- YES --- YES --- O.K.. 

4 --- YES YES --- YES --- --- YES O.K.. 
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Table 4: Obtained Results by 3D Modeling at t=0.003 seconds 

 
FEM EFG Method 

1/1 1/4 1/1 1/4 

Kinetic Energy [J] 
53.213 

52.704 53.346 53.312 

Error [%] -0.96 0.25  

Velocity [m/s] 
4.612 

4.592 4.619 4.618 

Error [%] -0.43 0.15  

Displacement [mm] 
14.648 

14.628 14.651 14.655 

Error [%] -0.14 0.02  

Contact Force [N] 
1440 

1513 1343 1399 

Error [%] 5.07 -6.74 -2.85 

 

As the Table 4 shows, the quantitative values of all numerical parameters, calculated by FEM and 

by EFG method are in a very good agreement. 

 
Table 5: Obtained Results by 2D Axisymmetric Modeling at t=0.003 seconds 

 3D FEM 2D FEM 2D EFG Method 

Displacement [mm] 
14.648 

14.942 14.946 

Error [%] 2.01 2.03 

Velocity [m/s] 
4.612 

4.936 4.9390 

Error [%] 7.03 7.09 

 

A similar study we made using a 2D axisymmetric model. As we can see in the Table 5, a good 

concordance between those two methods (FEM and EFG method) also exists, in the case of 2D 

axisymmetric modeling. 

As the obtained results are concerned, these are much more than those presented in this paper. 

We selected only most important and most significant for the aim of our paper. Our research also 

included an analysis of the type and the finesse degree of the mesh. All the results referring to these 

aspects are those expected. 

We are aware that not all the benefits of the EFG method have been demonstrated. The same as 

the foam behavior is concerned. All these will be the subjects of other papers. 

 
6. Conclusions 

This paper synthetically presents the fundamentals of the theoretical and numerical 

approaching of the foam materials. Some possibilities for over coming the errors appearing in 

numerical modeling of the contact between foam and rigid materials are also presented. 

The paper presents the theoretical fundamentals of the EFG method. Also, the using of the 

EFG method is presented, for the same given problem. Three models were used in numerical 

modeling, by FEM and by EFG method: 3D full model, 3D a quarter model and 2D axisymmetric 

model. All the results are in a very good agreement. 

The using of EFG method present some known advantages, specific to the meshless or free 

particle method, but also represent a viable way to overcome the errors that occur a given stress-strain 

curve of the foam materials. Of course, by post-processing of the results much more parameter would 

have been presented, about impactor and foam, but we have chosen only a few more useful parameters. 

The paper can be useful to the researchers interested in numerical modeling of the foam 

materials. As the EFG method is concerned, this should have to be used in such circumstances and all 
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the time when large displacement and great nonlinearities occur. 
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