
A LINGUISTIC MODEL IN COMPONENT ORIENTED PROGRAMMING

Crăciunean Daniel Cristian
(Ph.D. student), Faculty of Engineering/Department of Computers and Information Technology, ”Lucian

Blaga” University of Sibiu, Sibiu, Romania, daniel.craciunean@gmail.com

Crăciunean Vasile
(associate professor / Ph.D.), Faculty of Engineering/Department of Computers and Information Technology,

”Lucian Blaga” University of Sibiu, Sibiu, Romania, vasile.craciunean@ulbsibiu.ro

Abstract: It is a fact that the component-oriented programming, well organized, can bring a large increase
in efficiency in the development of large software systems. This paper proposes a model for building software systems
by assembling components that can operate independently of each other. The model is based on a computing
environment that runs parallel and distributed applications. This paper introduces concepts as: abstract aggregation
scheme and aggregation application. Basically, an aggregation application is an application that is obtained by
combining corresponding components. In our model an aggregation application is a word in a language.

Keywords - abstract aggregation scheme, aggregation component, aggregation computing block, aggregated
application, network of aggregated applications.

1. Introduction
Component-oriented programming is a living hope at the moment in the world of software

developers in terms of increasing efficiency. There is a general consensus that the most effective reuse of
written code, are components that can function in a suitable environment independently from the other
components. A component includes in it all the necessary information to be used by a client.

Component-oriented programming involves two distinct activities [2]: create new components and
creating applications by aggregating existing components. Therefore when we want to develop a component
oriented application will have to first try to build on existing components and just after that to build new
components needed for our application requirement. This components will enlarge our base of components.

Our base of components, on which we build applications, together with facilities for component
construction and management is the component infrastructure.

The component infrastructure consists of three distinct models: a component model, a component
connection model, and a component deployment model.

A component model defines what a valid component is, and how to create a new component in the
component infrastructure. All reusable components will be built, thus, according to the model of the
component. Each component infrastructure has a library of reusable components conforming to the
component model.

The component connection model defines a collection of connectors and support facilities for
component aggregation. Therefore, the connection model determines how to build an application or a larger
component from existing components.

The component deployment model describes how the components will be implemented in a work
environment.

The component infrastructure is also called component-oriented technology or component-oriented
architecture.

Based on this reality and the belief that this is the evolution of software development, this paper
proposes a linguistic model for building complex application starting from components. Simplifying things,
in this paper an application is a word in a language. All the components of an application are designed to
operate in a parallel and distributed environment.

In 3. we introduce the notion of an abstract aggregation scheme (S) and the language L(S)
associated with it. The abstract aggregation scheme is a general framework that defines an aggregated
application. In 4. we introduce the notion of network of aggregated applications and functional aggregated
application.

We believe that the present paper provides the necessary mechanisms to build static or dynamic
optimal applications by assembling independent components.

DOI: 10.1515/aucts-2016-0007
ACTA UIVERSITATIS CIBINIENSIS – TECHNICAL SERIES
Vol. LXVIII 2016

© 2016 “Lucian Blaga” University of Sibiu

2. Preliminary Notions and Notations
Let X be a set. The family of subsets of X is denoted by Ƥ(X). The cardinality of X is denoted by

|X|. The set of natural numbers, {0, 1, 2,} is denoted by N. The empty set is denoted by Ø. An alphabet
is a finite nonempty set of abstract symbols. For an alphabet V we denote by V* the set of all strings of
symbols in V. The empty string is denoted by λ. The set of nonempty strings over V, that is V*-{λ}, is
denoted by V+. Let Sub(w) denote the set of subwords of w. Each subset of V* is called a language over V.
The length of a string x∈V* (the number of symbol occurrences in X) is denoted by |x|. The number of
occurrences of a given symbol a∈V in x∈V* is denoted by |x|a. Let Symb(w) denote the set of symbol
occurrences in w.

3. Abstract Aggregation Scheme
Definition 1. An abstract aggregation scheme is a construct of the form

S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
where
A is a finite set of elements called elementary components;
ρ is an equivalence relation over A that we name a cohabitation relation over A.
We denote by Aρ=A|ρ the set of equivalence classes of A with respect to this relation. The elements of Aρ
are called components;
f is a function f: Aρ → Ƥ(Aρ);
LX is a language over Aρ, (∀) X∈Ƥ(Aρ).

An elementary component c∈A performs a single action. The aggregation components, which can
contain multiple actions, will be formed by grouping several elementary components that are equivalent
relative to the cohabitation relationship. The cohabitation relationship ρ solves a problem that is quite
common, where certain elementary components, for various reasons, can only be used in the presence of
other elementary components.

If Aρ≠A then we say that S is an abstract aggregation scheme with cohabitation. Otherwise, it a
non-cohabitation abstract aggregation scheme.

Starting from f we now define a function φ as follows:
φ: Ƥ(Aρ) → Ƥ(Aρ)
𝜑𝜑(𝑋𝑋) = �𝑓𝑓(𝑥𝑥)

𝑥𝑥∈𝑋𝑋

 (∀) X∈Ƥ(Aρ)

it’s clear that φn(X) can be defined as
φ0(X) = X (∀) X∈Ƥ(Aρ)

φn(X) = φ(φn-1(X))
Similarly we use the notation:
φ-1(X) = {x | f(x) ∩ X ≠ Ø}

φ-n(X) = φ-1(φ-(n-1)(X))
Also we observe that φn(X)∈Ƥ(Aρ) (∀) n∈N and (∀) X∈Ƥ(Aρ), and therefore over the set φn(X) we have
the language 𝐿𝐿𝜑𝜑𝑛𝑛(𝑋𝑋) as defined in Definition 1.
The set {φn(X); n≥0, X∈Ƥ(Aρ)} is finite, because Aρ is a finite set.

Definition 2. Let
S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme. Then the language L(S) specified by the abstract aggregation scheme
S is:

𝐿𝐿(𝑆𝑆) = � ��𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

∞

𝑖𝑖=0X∈Ƥ(Aρ)

Lemma 1. Let
S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme and the language

31

𝑅𝑅(𝑋𝑋) = ��𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

∞

𝑖𝑖=0

then
R(X) = R1(X)⋃R2(X)(R3(X))*R4(X)
where

𝑅𝑅1(𝑋𝑋) = ��𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

𝑖𝑖1−1

𝑖𝑖=0

 𝑅𝑅2(𝑋𝑋) = �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖1−1

𝑘𝑘=0

𝑅𝑅3(𝑋𝑋) = �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖2−1

𝑘𝑘=𝑖𝑖1

 𝑅𝑅4(𝑋𝑋) = � �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=𝑖𝑖1

𝑖𝑖2−2

𝑖𝑖=𝑖𝑖1

Proof. For X∈Ƥ(Aρ) we consider the following sequence:
X, φ(X), φ2(X), …, φk(X), …

Because the set X⊂ Aρ is finite, it’s obvious that (∃) i and j such that φi(X) = φj(X) and therefore
𝐿𝐿𝜑𝜑𝑖𝑖(𝑋𝑋) = 𝐿𝐿𝜑𝜑𝑗𝑗(𝑋𝑋).

Let i1 and i2 (i1<i2) be the smallest such values for i and j. If we denote

𝑅𝑅1(𝑋𝑋) = ��𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

𝑖𝑖1−1

𝑖𝑖=0

 𝑅𝑅2(𝑋𝑋) = �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖1−1

𝑘𝑘=0

𝑅𝑅3(𝑋𝑋) = �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖2−1

𝑘𝑘=𝑖𝑖1

 𝑅𝑅4(𝑋𝑋) = � �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=𝑖𝑖1

𝑖𝑖2−2

𝑖𝑖=𝑖𝑖1

then the Lemma 1 is proved.
We have a prefix from 0 to i1 which is not repeated, followed by R3 which can repeat from 0 to

infinite and then we have a remainder (a part from a period).
Theorem 1. Let

S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme. If all languages LX, X∈Ƥ(Aρ) are of type i∈{0,1,2,3} in the Chomsky
hierarchy, then the language L(S) is of type i in the Chomsky hierarchy[1][3][4].

Proof. It follows immediately from closing the languages from the Chomsky hierarchy at union,
catenation, catenation closure and from Lemma 1.

4. Aggregation Scheme of the Components
We concretize now the notion of elementary component and component.
Definition 3. An elementary component c∈A is a construct of the form

c = (i, o, m)
where
i=(di:Ti,ei:Ui) is a pair (parameter, event) which forms the entrance to the elementary component, di and ei
are identifiers and Ti and Ui are the types of these identifiers;
di:Ti is the input parameter;
ei:Ui is the input event that triggers action m.
o=(do:To,eo:Uo) is a pair (parameter, event) which forms the output from the elementary component, do and
eo are identifiers and To and Uo are the types of these identifiers;
do:To is the output parameter of the elementary component;
eo:Uo is the output event of the elementary component.
m is the appropriate action of the elementary component. This is the action that the elementary component
performs when it receives the Ui event and the input parameter di:Ti.

We will further consider an elementary component as a computational process which admits an
object and an event with the types specified by i as input and an object and an event with the types specified
by o as output.

32

Input objects, events and actions are considered to be standardized, i.e. any element that performs
the same action will have the same input, same output and the same action. Thus the elementary components
may be invoked by actions, input parameters and events without knowing their names.

Definition 4. A aggregation component a is a construct of the form
a = (I,O,M,u)
where
I={ic | c∈a};
O={oc | c∈a};
M={mc | c∈a};
u:I→M is a function called an action selection function.

In this conditions we will define the function f: Aρ → Ƥ(Aρ), from the definition of the abstract
aggregation scheme, like this:
f(a) = {b | Oa ∩ Ib ≠ Ø}, (∀) a∈Aρ

Let S be an abstract aggregation scheme with the aggregation components defined as in Definition
5. Then every word 𝛼𝛼 ∈ 𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋) ;𝑋𝑋𝑋𝑋 Ƥ(𝐴𝐴ρ) defines an aggregation computing block.
If we have a string of aggregation components α=a1a2...am where a∈Symb(α) is of the form
a = (Ia,Oa,Ma) then we denote
𝐼𝐼𝛼𝛼 = � 𝐼𝐼𝑎𝑎

𝑎𝑎∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼)

and with
𝑂𝑂α = � 𝑂𝑂𝑎𝑎

𝑎𝑎∈𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼)

Definition 6. An aggregation computing block is a construct of the form
Ɓ = (I, O, α, B)
where 𝛼𝛼 ∈ 𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋) ;𝑋𝑋𝑋𝑋 Ƥ(𝐴𝐴ρ) ; I=Iα; O=Oα;

B is an object, named block-board, that can store information of the form (parameter, event). B is
used by the aggregation components for communication.

Definition 7. Let
S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme and X∈Ƥ(Aρ). Then the language

𝑅𝑅(𝑋𝑋) = ��𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

∞

𝑖𝑖=0

is called an aggregation network generated by X.
Definition 8. Let

S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme, R(X) an aggregation network generated by X and α=α1 α2 … αn,
𝛼𝛼𝑖𝑖 ∈ 𝐿𝐿𝜑𝜑𝑖𝑖(𝑋𝑋) a finite word from RX. Therefore, 𝒜𝒜= (I, O, α,B) is called an aggregate application generated
by X.
𝐼𝐼 = 𝐼𝐼𝛼𝛼1 𝑂𝑂 = �𝑂𝑂𝛼𝛼𝑖𝑖

𝛼𝛼𝑖𝑖

B is an object, called application-board, that can store information of the form (parameter, event).
B is used by the aggregation components for communication.

Definition 9. Let S be an abstract aggregation scheme and 𝒜𝒜= (I,O,α,B) an aggregate application
generated by X and α=α1 α2 … αn, 𝛼𝛼𝑖𝑖 ∈ 𝐿𝐿𝜑𝜑𝑖𝑖(𝑋𝑋).Then the application 𝒜𝒜 is a functional aggregate application
generated by X if (∀) i=1, …, n-1 we have 𝐼𝐼𝛼𝛼𝑖𝑖+1 ⊆ 𝑂𝑂𝛼𝛼𝑖𝑖.

Definition 10. Let
S = (A, ρ, f, {LX | X∈Ƥ(Aρ)})
be an abstract aggregation scheme. Then

𝑅𝑅(𝑋𝑋,𝑛𝑛) = �𝐿𝐿𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑛𝑛

𝑘𝑘=0

 ,𝑛𝑛 ∈ 𝑁𝑁

is called a network of aggregate applications generated by X and length n.

33

We remark that R(X, n) contains all aggregate applications generated by X and length n, namely all
aggregate applications of the form:
𝒜𝒜= (I,O,α,B)

𝐼𝐼 = �𝐼𝐼𝑎𝑎
𝑎𝑎∈𝑋𝑋

 𝑂𝑂 = � � 𝑂𝑂𝑎𝑎
𝑎𝑎∈𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑛𝑛

𝑘𝑘=0

α∈R(X,n) , (Bi, i=1, …, n) and B are like in the Definition 7.
In practice we are interested in an application that has a lot of inputs I and plenty of outputs O.

Obviously, we need to search for our application in a subset of R(X, n), which we denote R(X, Y, n)
where:
X is a minimal set Z with the property ⋃ 𝐼𝐼𝑎𝑎𝑎𝑎∈𝑍𝑍 ⊇ 𝐼𝐼

𝑛𝑛 = min�𝑖𝑖|𝑂𝑂 ⊂� � 𝑂𝑂𝑎𝑎
𝑎𝑎∈𝜑𝜑𝑘𝑘(𝑋𝑋)

𝑖𝑖

𝑘𝑘=0

�

Y = {a∈φn(X) | Oa∩O≠Ø}

𝑅𝑅(𝑋𝑋,𝑌𝑌,𝑛𝑛) = �𝐿𝐿(𝜑𝜑𝑘𝑘(𝑋𝑋)∩𝜑𝜑−(𝑛𝑛−𝑘𝑘)(𝑆𝑆))

𝑛𝑛

𝑘𝑘=0

 ,𝑛𝑛 ∈ 𝑁𝑁

Definition 11. The language R(X, Y, n) is called an acceptable network of aggregate applications.

5. Conclusions
The purpose of this model is to generate applications by combining components. An application 𝒜𝒜

defined as in Definition 8 will operate in parallel and distributed environment. Starting the system involves
parallel activation of all aggregation components. The elementary components of the same component will
communicate with each other by means of a block-board associated with the corresponding block. The
access to block-board is synchronized.

Each component will get its input data from the application-board and write all its output data also
on the application-board. Of course, these operations will be synchronized using semaphores associated
with each type from the application-board.

We notice that we can get many applications that do the same thing from the user perspective,
namely the applications have the same input and output.

It’s natural that we put the question to choose the optimal application to solve a particular problem,
optimal in terms of execution time and resources. The problem to find the optimal application can be put
in two ways:

i) Static determination of an optimal application.
ii) Building an application that evolves in time, changing its components in concordance of their

efficiency.

6. References

1. Aho, Alfred V., Sethi Ravi, Ullman Jeffrey D., Compilers: Principles, Techniques, and
Tools, Addison Wesley, (2001).

2. Wang, Andy Ju An., Qian, Kai., Component-Oriented Programming , John Wiley & Sons,
(2005).

3. Salomaa, A., Formal Languages, New York, Academic Press, (1973).
4. Păun Gh., Probleme actuale in teoria limbajelor formale, Editura Academiei, (1983).

34

	1. Introduction
	2. Preliminary Notions and Notations
	3. Abstract Aggregation Scheme
	4. Aggregation Scheme of the Components
	5. Conclusions

