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Abstract: This paper introduces a new topology and a framework for distributed constraint optimization 
approaches to solving complex problems. Initial experiments with this approach show decreasing communication 
overhead, high scalability and low execution times due to parallelization of tasks. In the experiments section we 
analyze a dry random choice algorithm run of the framework and measure the overhead time, then we compare the 
topology performance with a two level arborescent approach to distributed constraint optimization. The results show 
a significant improvement on execution time and better scalability. 
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1. Introduction  
A class of algorithms that solve complex problems is Distributed Constraint Optimization (DCO) [1]. 
This type of approach uses a set of agents that collaboratively set values to subsets of solutions minding 
the cost associated with a given set of constraints.  
The No Commitment Branch and Bound (NCBB) [2] algorithm petitions the search space as well as the 
constraints. This results in an arborescent virtual communication structure in which the same level 
siblings partition the solution space and paternal relations distribute the constraints. The leafs explore the 
space and pass a local-optimal solution to the parent. Solutions can be accepted or rejected by using 
heuristic functions. NCBB is of polynomial complexity (P), but consumes an exponential number of 
messages. 
ADOPT [3] uses a semi-arborescent communication topology but works just like NCBB. The difference 
is that ADOPT does not use heuristic functions but transfers minimum and maximum cost values for 
solutions through asynchronous messages. As a consequence ADOPT has the same complexity as NCBB. 
The algorithm DPOP [4] the communication structure is also semi-arborescent communication structure. 
However, in this case, parents generate all possible solutions to be tested by the offspring. DPOP has 
exponential asymptotic complexity but linear communication complexity. 
 OPTAPO [5] uses an arborescent topology. This algorithm tests for conflicts using mediator agents with 
limited access to agent constraints. Mediators use branch and bound just like NCBB to solve these 
conflicts. OPTAPO has polynomial computational complexity and exponential message complexity. 
The Dischoco [5] framework facilitates DCO, by handling message passing, constraints and variables but 
the last two have to be distributed by some other code. 
The reviewed algorithms have workflows of agents that wait for results from other agents, which implies 
a lot of idle time. This idle time can be reduced by relaxing the topology and permitting any agent to 
communicate with any other available agent. For that reason we propose a new and completely 
distributed architecture without critical agents such are the root agent in the arborescent topologies. The 
solution implies that agents simply pass partial solution between them appending or rejecting them on the 
basis of their internal constraints. 

2. Framework architecture 
Our architecture is based on assigning each agent a part of the constraints and a subset of the solution 
space.  The preferred topology is complete graph however any other topologies are supported for 
backward compatibility with other algorithms. 
In this approach each agent creates its own population of partial solutions from its solution space, which 
are software objects [8]. A partial solution can migrate from one agent to another. When the agents are 
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managed by different machines the partial solution is sent by way of messages. However, if the agents are 
managed by the same machine the partial solution is enqueued in a local queue. Solution movement is 
accomplished in both cases by the SEND-TO() method.  An agent has two other methods continuously 
handling incoming partial-solutions: RECEIVE-SOLUTION() that handles solutions received in the form 
of messages and LOCAL-MOVE() that handles the partial-solutions in the local queue. These methods 
are detailed in the following code: 

 
 
Partial solutions also contain metadata attributes like: 
• cost of the current partial solution 
• agent of origin 
• best solution cost (the cost of the currently best solution, this is the synchronization means) 
• a list of agents  representing the path followed so far 

1.1 Framework Setup 
 
The framework was designed to work on any computer network including a computer cluster. The main 
requirements to setup the framework are: 
1. locating the executable java archive "framework.jar" in a storage space that is accessible to every 

computing node, along with the problem graph file  
2. running the JADE platform on one of the computing nodes 
3. running auxiliary containers connected to the platform from step 2 on the other computing nodes 
4. running the Bootstrap agent that will automatically detect the available resources and distribute the 

agents and vertices. 

 

structure of one server 

 
Fig. 1. Structure of the cluster 

RECEIVE-SOLUTION()  
1. RECEIVE(partialSolution)  
2. ADJUST(partialSolution)  
3. SEND-TO(BEST-NEIGHBOR(partialSolution), partialSolution) 
 
SEND-TO(destination, partialSolution) 
1. if LOCAL(destination) then 
2.  ENQUEUE(partialSolution) 
3. else 
4.  SEND(destination, partialSolution) 
 
LOCAL-MOVE()  
1. DEQUEUE(partialSolution) 
2. ADJUST(partialSolution)  
3. SEND-TO(BEST-NEIGHBOR(partialSolution), partialSolution) 
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The test framework was deployed and used on an Infragrid cluster consisting of 128 cores, each one 
equipped with 1GB of RAM, connected by an Infiniband 40 Gbits/s network. This cluster of computing 
nodes is located in a remote temperature controlled room from the West University of Timisoara HPC1. 
The cores share the same external storage space. This computer cluster is composed of 16 servers with 8 
cores per server, each of type Intel Xeon CPU E5504 . Each server is allocated a single IP address. The 
cluster is running Linux and Condor workload management system [6]. Condor provides a job queueing 
mechanism, scheduling policy, priority scheme, resource monitoring, and resource management. Users 
can submit their parallel or serial jobs, which will be placed into a queue and, based upon a policy, 
resources will be allocated to them. Submission of a job is done by means of a “*.condor” script that 
indicates input, output and Condor log files, the executable and the universe. A Condor universe defines 
an execution environment. To deploy our system we used the Parallel universe [6]. 
The JADE platform needs to be running in order for additional containers to be created. For the 
initialization on a Condor computer cluster two jobs must be scheduled: platform execution on a single 
computing node (i.e. a cluster core) and creation of containers, each on a separate machine. 
This stage is particularly challenging since the Java universe supports only serial jobs. We are forced to 
use the Parallel universe to run a shell script on multiple machines (see script run.condor). 

 
The shell script executes the framework.jar. This jar can be used to start the framework. 

 
In the script we present the actual scripts that are used to launch our framework on the Condor computer 
cluster. Each machine has its own output and error file defined by its unique identification number 
$(Node). The Condor log file of the job batch can also be specified in the script. In this example 7 
containers are created for the purpose of the experiment. 
The framework.jar, the problem input file, the  job scheduling script, and the shell script  have to be 
transferred to the shared storage space using File Transfer Protocol (FTP). Afterwards remote access must 
be utilized to make the shell script executable by running the Linux command "chmod +x run.sh". Using 
an executable shell script to run the framework.jar allows us to quickly update the code to the latest 
version. Specifically, there is no need to change the use rights of every new version of the file 
framework.jar using the command "chmod". 
At this time a job scheduling script can be executed in mere seconds, starting experiments at will from a 
single remote point of access. 
 

3. Framework Overhead Experimental Results  
 

We tested the framework overhead using the simple random choice algorithm implementation on k= 
{1,2,3,4,5,6,7,10} computing nodes, using one agent per computing node and executing 10 experimental 
rounds for every value of k. The stop condition is set for each agent to finish moving M=10000 partial 
solutions. Since at this point in our research we are just trying to improve the topology and 
communication time we will only be using a random choice algorithm to explore solutions without 
evaluating them. 

As a test map we used "pr1002", a 1002 vertex graph from the benchmark library TSPLIB [7]. 
Therefore in total, during the experiment the framework will execute a total of approximately 10 million 
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run.sh 
#!/bin/bash 
java -jar framework.jar $@ 

 

run.condor 
executable =./run.sh 
Universe = parallel 
Arguments = platform pr1002 10 
output = out.txt 
error = err.txt 
log = log.txt 
machine count= 1 
Queue 
Arguments = container 
output = out$(Node).txt 

   
    

 
 

33 

                                                      



partial-solution migrations. We used AGENT-INIT() to initialize one empty partial-solution per agent, 
summing up 1002 partial-solutions in the whole experiment. 
 We used the HPC Infragrid cluster2 in this experiment and we obtained the performance measures in 
Table 1 where Tmin is the minimum execution time obtained by experimental round, respectively Tmax is 
the maximum execution time while Tavg is the average execution time per experiment. We also calculated 
the maximum deviation dmax from Tavg normalized to the value of Tavg as presented in the following 
equation. 
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In Fig. 2 we present a graphical representation of the values Tmin, Tmax and Tavg from Table 1. We can 
observe a steep climb of overhead when the framework uses more computing nodes compared to a single 
computing node. This is due to the fact that part of the partial-solution moves become messages between 
the two agents running on the two available computing nodes. Furthermore we observe a slight 
decreasing trend in the execution time as the number of computing nodes further increases to k=3 and so 
on.  

 
In Fig. 3 we present a graphical representation of the deviation from Tavg of the execution time of 

experimental rounds. We can observe how this value is very low when using a single computing node and 
greater when using more computing nodes.  This is due to the random nature of choosing the next agent 
to send the partial-solution to. The random choice generates a variable number of messages and local 
moves. We can, however, observe a decreasing pattern in dmax when the number of computing nodes 
increases.  This is due to the fact that the probability of choosing a agent that is managed by a different 
machine rises. In turn, this causes a stabilization of execution time. For example, when using 2 computing 
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Table 1. Framework overhead 

k Tmin[s] Tmax[s] Tavg[s] dmax 
1 15.5 16.1 15.8 0.017101 
2 1095.2 1244.4 1141.6 0.065324 
3 1105.2 1201.6 1153.3 0.041763 
4 1011.5 1091.5 1050.8 0.038042 
5 942.4 997.5 974.3 0.028279 
7 872.9 924.3 888.8 0.028899 

10 729.1 771.7 751.1 0.028356 
 

 
Fig. 2. Framework overhead  
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nodes a partial-solution will move to another agent with the probability of 50%, while when using 10 
computing nodes the probability of sending a partial-solution to another agent is 90%. 

 
 

These results show how the overhead of the test framework evolves in relation to the number of 
computing nodes used. Note that although the number of messages rises the execution time still decreases 
thanks to the distributed nature of the framework. 
In Table 2 we present a side by side comparison of our approach and a two level arborescent topology 
(also known as the master-slave topology) trying to solve TSP map pr1002 using a simple random 
solution generation and cost evaluation. Note that in this case we are using evaluation of solutions since 
we are trying to compare actual working models. Execution stops at 10 000 partial-solution evaluations. 
Table 2 shows that our framework solutions offer significantly better execution times and better 
scalability than a master slave approach.  

 

Table 2. Side by side comparison 

  Our approach 2 level arborescent 
model 

k Partial 
solutions per 

agent 
Tavg[s] Tavg[s] 

1 1002 22718,23 22558,11 

5 200 4844,64 17903,89 

8 125 2915,77 11525,83 

10 100 2312,82 12082,34 

15 66 1448,88 16419,84 

20 50 1536,75 21855,6 

 

 
Fig. 3. Maximum deviation from Tavg 
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Fig. 4 depicts a graphical representation of the contents of Table 2 resulting in a visual comparison of 
the execution time Tavg obtained by our architecture compared with Tavg of the arborescent model when 
increasing the number of computing nodes.  

4. Conclusions and future work 
In this paper we proposed a new topology for DCO that shows promising results in initial experiments: 

high scalability and better execution time in the case of random solution search. Future work includes a 
more in-depth comparison with existing approaches and further analysis of the frameworks scalability. 
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