
 DOI: 10.1515/aucts-2015-0023
ACTA UNIVERSITATIS CIBINIENSIS – TECHNICAL SERIES
Vol. LXVI 2015

© 2015 “Lucian Blaga” University of Sibiu

MODELLING OF MANUFACTURING PROCESSES WITH MEMBR 53TANES

CRĂCIUNEAN Daniel Cristian
SC SoftLine SRL, Sibiu, Romania, daniel@sln.ro

CRĂCIUNEAN Vasile

Faculty of Engineering/Computer & Electrical Engineering Department, “Lucian Blaga” University, Sibiu,
Romania, vasile.craciunean@ulbsibiu.ro

Abstract: The current objectives to increase the standards of quality and efficiency in manufacturing

processes can be achieved only through the best combination of inputs, independent of spatial distance between
them. This paper proposes modelling production processes based on membrane structures introduced in [4].
Inspired from biochemistry, membrane computation [4] is based on the concept of membrane represented in its
formalism by the mathematical concept of multiset. The manufacturing process is the evolution of a super cell
system from its initial state according to the given actions of aggregation. In this paper we consider that the atomic
production unit of the process is the action. The actions and the resources on which the actions are produced, are
distributed in a virtual network of companies working together. The destination of the output resources is specified
by corresponding output events.

Key words: 64Tmembrane structure, super-cell, action of aggregation, aggregation system of actions

with membrane

Introduction
Advanced information technology makes it possible to realize virtual organization in practice,

and also the necessities of virtual organizations inspire the information technology [5].
 At the Center for Computer Science, Turku, Finland, in November 1998 Gheorghe Păun,
proposed a new paradigm of computation: Membrane Computation [3]. This new paradigm of
computation seems to be an interesting and original approach to computing inspired from biochemistry.
The main new concepts defined are: the membrane, membrane structure and super cell system [3]. More
details about these notions are found in [1], [2], [3], [4].
 Let X be a set. The family of subsets of X is denoted by Ƥ(X). The cardinality of X is denoted by
|X|. An alphabet is a finite nonempty set of abstract symbols. For an alphabet V we denote by VP

*
P the set

of all strings of symbols in V. The empty string is denoted by λ. The set of nonempty strings over V, that
is VP

*
P-{λ}, is denoted by VP

+
P. Let Sub(w) denote the set of subwords of w. Each subset of VP

*
P is called a

language over V. The length of a string x∈V* (the number of symbol occurrences in X) is denoted by |x|.
The number of occurrences of a given symbol a∈V in x∈V P

*
P is denoted by |x|RaR. Let Symb(w) denote the

set of symbol occurrences in w.
 Membrane computation is based on the concept of membrane represented in his formalism by the

mathematical concept of multiset. A multiset (over a set X) is a mapping M: X→ N ⋃ {∞}. For a ∈ X,
M(a) is called the multiplicity of a in the multiset M. The support of M is the set
supp(M)={a∈X|M(a)>0}. A multiset M of finite support, supp(M) = {aR1R,...,aRnR} can be written in the form
{(aR1R , M(aR1R)),. .. , (aRnR, M(aRnR))}. We can also represent this multiset by the string w(M)={a1

M(a1)... an
M(an)},

as well as by any permutation of w(M).
 A membrane structure is a set of labeled multisets with certain restrictions. We define first the
language MS over the alphabet {[,]}, whose strings are recurrently defined as follows [1]:
1. [] ∈MS;
2. if μR1R,… μRnR ∈MS, n ≥ 1, then [μR1R,… μRnR]∈MS;
3. nothing else is in MS.
 We define now the following relation over the elements of MS: x∼ y if and only if we can write
the two strings in the form x = μR1RμR2RμR3RμR4R, y = μR1RμR3RμR2RμR4R, for μR1RμR4R ∈MS and μR2 R,μR3R ∈MS. We also denote
by ∼ the reflexive and transitive closure of the relation ∼. This is clearly an equivalence relation. We

denote by MS the set of equivalence classes of MS with respect to this relation. The elements of MS are
called membrane structures.
 Each matching pair of parentheses [,] appearing in a membrane structure is called a membrane.
The number of membranes in a membrane structure μ is called the degree of μ and denoted by deg(μ).
The external membrane of a membrane structure μ is called the skin membrane of μ. A membrane which
appears in MS in the form [] (no other membrane appears inside the two parentheses) is called an
elementary membrane.
The depth of a membrane structure μ, denoted by dep(μ), is defined recurrently as follows [1]:
1. if μ = [], then dep(μ) = 1;
2. if μ = [μ1… μn]∈MS, for some μ1,… μn∈MS then dep(μ) = max{dep(μi) \1 ≤ i ≤ n} + 1.

2. Aggregation system of actions with membrane
Through the manufacturing process we understand the transformation of a given set of resources

(raw materials, semi-finished goods, energy, labor, equipment) into finished products by aggregating
specific actions according to their manufacturing recipes.

On the membrane structure Păun adds a set of transforming rules and he therefore obtains the
super-cell system [1]. We are introducing the notion of action of aggregation. The manufacturing process
is the evolution of a super-cell system from its initial state according to the given actions of aggregation.

In this paper we consider that the atomic production unit of the process is the action [6][7]. The
actions and the resources on which the actions are produced, are distributed in a virtual network of
companies working together. Actions are very inhomogeneous beginning with actions of design,
procurement, logistics, manufacturing, quality control etc. There will be software actions that will store
and dynamically process all data on the evolution of the production process. Therefore we begin by
defining the notion of action of aggregation on witch our model is based.

Definition 2.1. [8] An action of aggregation a is a construct of the form

a = (I,O,M) where:

I={(ri,ci,ei) | i=1,2,...m ; ri is a resource, ci is the quantity of that resource, ei is an event};

The resource ri is called an input resource and represents the necessary resource in the ci quantity
for the action a, and ei is called an input event.

O={(ro,co,eo) | o=1,2,...n ; ro is a resource or a final product, co is the quantity of the resource, eo is an
event}; If ro is the resource then it’s called the output resource and co is the quantity of that resource, else
ro is the final output product. The event eo is the output event.

M is a set of data and associated metadata such as duration of action, the minimum allowed stock, costs,
technical data about the action, software components, etc.

We write below the inputs (I) and outputs (O) of the form (r, c, e) in the form (rc, e).

Definition 2.2. An aggregation system of actions with membrane of degree m, m≥ 1, is a
construct of the form:
S=(V,T,E, μ,w1,…, wm, (A1,ρ1),… ,(Am,ρm)),
where:
(i) V is an alphabet; its elements are called resources;
(ii) T ⊆V is the output alphabet, its elements are called final products;
(iii) E={λ,∀, here, out, in i};
(iv) μ is a membrane structure consisting of m membranes, with the membranes and the regions labelled
in a one-to-one manner with 1, 2,. . ., m;
(v) wi ,1≤ i≤m, are strings representing multisets over V associated with the regions 1, 2, .. . , m of μ;
 (vi) Ai ,1≤ i≤m, are a finite set of actions of aggregation associated with the regions 1,2,... , m of μ;
ρi is a partial order relation over Ai , 1 < i < m, specifying a priority relation among actions of Ai.

The membrane structure μ and w1,…, wm of an aggregation system of actions with membrane
define a super-cell. The m-tuple (w1,…, wm) constitutes the initial configuration of S. In general, any
sequence Wt=(w1

t ,…, wm
t), is called configuration of S at the time t.

The sequence of configurations W0,W1,…,Wt,… , is obtained as follows:
W0=(w1,…, wm), the initial configuration of S;
Wt+1=(w1

t+1,…, wm
t+1) is the result of applying all possible actions of aggregation on the configuration Wt.

36

An action of aggregation is executed at time t if it has the highest priority and there are all
necessary resources to its execution and other activities in the same region that consumes the same
resources. The execution of an action determine appropriate resource consumption.

The destination of the output resources is specified by corresponding output events. The result of
using the action is determined by the output event. If a resource appears in O in the form (rc, here) then it
will remain in the same region. If a resource appears in O in the form (rc, out) then the resource will exit
the membrane and will become of the region immediately outside it. In this way, it is possible that a
resource leaves the system: if it goes outside the skin of the system, then it never comes back. This is the
case of the final products. If an action appears in the form (rc, in i) , then a will be added to the membrane
i, providing that the recurce is adjacent to the membrane i, otherwise the execution of the action is not
allowed.

Example 2.1. Consider the aggregation system of actions with membrane of degree 3:
S=(V,T,E, μ,w1, w2, w3,(A1,ρ1), (A2,ρ2),(A3,ρ3)) where:
V={r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r15, r16, r17, r18, q1,q2,q4,q6,q7,q9,q15} ;
T={ r16, r17, r18};
E={∀,here,out};
μ= [1 [2]2 [3]3]1;
w1= 𝑞159 ; w2= 𝑞16𝑞29𝑞43; w3= 𝑞612𝑞718𝑞96;
A1={ a15 , a16 , a17 , b15 , b16 }; ρ1 ={b15>b16};
a15: I={(𝑟51,∀), (𝑟151 ,∀)}; O={(𝑟161 ,out), (𝑞151 ,here) };
a16: I={(𝑟101 ,∀), (𝑟151 ,∀)}; O={(𝑟171 ,out), (𝑞151 ,here) };
a17: I={(𝑟121 ,∀), (𝑟151 ,∀)}; O={(𝑟181 ,out), (𝑞151 ,here) };
b15: I={(𝑞159 ,∀)}; O={(𝑟159 ,here) };
b16: I={(𝑞156 ,∀)}; O={(𝑟156 ,here) };
A2={ a1 , a2 , b1 , b11 , b2 , b21 , b4 , b42}; ρ2 ={ b1>b11; b2>b21; b4>b41};
a1: I={(𝑟12,∀), (𝑟23,∀)}; O={(𝑟31,here) , (𝑞12,here), (𝑞23,here)};
a2: I={(𝑟31,∀), (𝑟41,∀)}; O={(𝑟51,out), (𝑞41,here)};
b1: I={(𝑞16,∀)}; O={(𝑟16,here) };
b11: I={(𝑞14,∀)}; O={(𝑟14,here) };
b2: I={(𝑞29,∀)}; O={(𝑟29,here) };
b21: I={(𝑞26,∀)}; O={(𝑟26,here) };
b4: I={(𝑞43,∀)}; O={(𝑟43,here) };
b41: I={(𝑞42,∀)}; O={(𝑟42,here) };
A3={ a6, a7 , a8 , b6 , b61 , b7 , b71, b9 , b91}; ρ3 ={ b6>b61; b7>b71; b9>b91};
a6: I={(𝑟64,∀), (𝑟76,∀)}; O={(𝑟81,here), (𝑟111 ,here) , (𝑞64,here), (𝑞76,here)};
a7: I={(𝑟81,∀), (𝑟91,∀)}; O={(𝑟101 ,out), (𝑞91,here)};
a8: I={(𝑟111 ,∀), (𝑟91,∀)}; O={(𝑟121 ,out), (𝑞91,here)};
b6: I={(𝑞612,∀)}; O={(𝑟612,here) };
b61: I={(𝑞68,∀)}; O={(𝑟68,here) };
b7: I={(𝑞718,∀)}; O={(𝑟718,here) };
b71: I={(𝑞712,∀)}; O={(𝑟712,here) };
b9: I={(𝑞96,∀)}; O={(𝑟96,here) };
b91: I={(𝑞94,∀)}; O={(𝑟94,here) };
In membrane 2 we have:
initial configuration : 𝑞16𝑞29𝑞43 ;

They will perform the following actions:
t1: b1((𝑞16,∀))→((𝑟16,here));
 b2((𝑞29,∀))→((𝑟29,here));
 b4((𝑞43,∀))→((𝑟43,here));
configuration after t1: 𝑟16𝑟29𝑟43 ;
t2: a1((𝑟12,∀), (𝑟23,∀)) →((𝑟31,here) , (𝑞12,here), (𝑞23,here));
configuration after t2: 𝑟14𝑟26𝑟31𝑟43𝑞12𝑞23 ;

37

t3: a1((𝑟12,∀), (𝑟23,∀)) →((𝑟31,here) , (𝑞12,here), (𝑞23,here));
 a2((𝑟31,∀), (𝑟41,∀)) →((𝑟51,out), (𝑞41,here));
configuration after t3: 𝑟12𝑟23𝑟31𝑟42𝑞14𝑞26𝑞41 ;
t4: a1((𝑟12,∀), (𝑟23,∀)) →((𝑟31,here) , (𝑞12,here), (𝑞23,here));
 a2((𝑟31,∀), (𝑟41,∀)) →((𝑟51,out), (𝑞41,here));
 b11((𝑞14,∀))→((𝑟14,here));
 b21((𝑞26,∀))→((𝑟26,here));
configuration after t4: 𝑟14𝑟26𝑟31𝑟41𝑞12𝑞23𝑞42 ;
t5: a1((𝑟12,∀), (𝑟23,∀)) →((𝑟31,here) , (𝑞12,here), (𝑞23,here));
 a2((𝑟31,∀), (𝑟41,∀)) →((𝑟51,out), (𝑞41,here));
 b41((𝑞42,∀))→((𝑟42,here));
configuration after t4: 𝑟14𝑟26𝑟31𝑟41𝑞12𝑞23𝑞42 ;
Note that this is identical to the time t3 and so from now on in this membrane process is repeated.
Let's see what resources are sent in the outer membrane:
t1: λ; t2: λ; t3: 𝑟51; t4: 𝑟51; t5: 𝑟51;
In membrane 3 we have:
initial configuration : 𝑞612𝑞718𝑞96 ;

They will perform the following actions:
t1: b6((𝑞612,∀))→((𝑟612,here));
 b7((𝑞718,∀))→((𝑟718,here));
 b9((𝑞96,∀))→((𝑟96,here));
configuration after t1: 𝑟612𝑟718𝑟96 ;
t2: a6((𝑟64,∀), (𝑟76,∀)) →((𝑟81,here) , (𝑟111 ,here) , (𝑞64,here), (𝑞76,here));
configuration after t2: 𝑟68𝑟712𝑟81𝑟96𝑟111 𝑞64𝑞76 ;
t3: a6((𝑟64,∀), (𝑟76,∀)) →((𝑟81,here) , (𝑟111 ,here) , (𝑞64,here), (𝑞76,here));
 a7((𝑟81,∀), (𝑟91,∀)) →((𝑟101 ,out), (𝑞91,here));
 a8((𝑟111 ,∀), (𝑟91,∀)) →((𝑟121 ,out), (𝑞91,here));
configuration after t3: 𝑟64𝑟76𝑟81𝑟94𝑟111 𝑞68𝑞712𝑞92 ;
t4: a6((𝑟64,∀), (𝑟76,∀)) →((𝑟81,here) , (𝑟111 ,here) , (𝑞64,here), (𝑞76,here));
 a7((𝑟81,∀), (𝑟91,∀)) →((𝑟101 ,out), (𝑞91,here));
 a8((𝑟111 ,∀), (𝑟91,∀)) →((𝑟121 ,out), (𝑞91,here));
 b61((𝑞68,∀))→((𝑟68,here));
 b71((𝑞712,∀))→((𝑟712,here));
configuration after t4: 𝑟68𝑟712𝑟81𝑟92𝑟111 𝑞64𝑞76𝑞94 ;
t5: a6((𝑟64,∀), (𝑟76,∀)) →((𝑟81,here) , (𝑟111 ,here) , (𝑞64,here), (𝑞76,here));
 a7((𝑟81,∀), (𝑟91,∀)) →((𝑟101 ,out), (𝑞91,here));
 a8((𝑟111 ,∀), (𝑟91,∀)) →((𝑟121 ,out), (𝑞91,here));
 b91((𝑞94,∀))→((𝑟94,here));
configuration after t5: 𝑟64𝑟76𝑟81𝑟94𝑟111 𝑞68𝑞712𝑞92 ;
Note that this is identical to the time t3 and so from now on in this membrane process is repeated.
Let's see what resources are sent in the outer membrane:
t1: λ; t2: λ; t3: 𝑟101 𝑟121 ; t4: 𝑟101 𝑟121 ; t5: 𝑟101 𝑟121 ;
In membrane 1 we have:
initial configuration : 𝑞159 ;

They will perform the following actions:
t1: b15((𝑞159 ,∀))→((𝑟159 ,here));
configuration after t1: 𝑟159 ;
t2: No action.
configuration after t2: 𝑟159 ;
t3: No action.

38

configuration after t3: 𝑟51𝑟101 𝑟121 𝑟159 ;
t4: a15 ((𝑟51,∀), (𝑟151 ,∀)) →((𝑟161 ,out), (𝑞151 ,here));
 a16 ((𝑟101 ,∀), (𝑟151 ,∀)) →((𝑟171 ,out), (𝑞151 ,here));
 a17 ((𝑟121 ,∀), (𝑟151 ,∀)) →((𝑟181 ,out), (𝑞151 ,here));
configuration after t4: 𝑟51𝑟101 𝑟121 𝑟156 𝑞153 ;
t5: a15 ((𝑟51,∀), (𝑟151 ,∀)) →((𝑟161 ,out), (𝑞151 ,here));
 a16 ((𝑟101 ,∀), (𝑟151 ,∀)) →((𝑟171 ,out), (𝑞151 ,here));
 a17 ((𝑟121 ,∀), (𝑟151 ,∀)) →((𝑟181 ,out), (𝑞151 ,here));
configuration after t5: 𝑟51𝑟101 𝑟121 𝑟153 𝑞156 ;
t6: a15 ((𝑟51,∀), (𝑟151 ,∀)) →((𝑟161 ,out), (𝑞151 ,here));
 a16 ((𝑟101 ,∀), (𝑟151 ,∀)) →((𝑟171 ,out), (𝑞151 ,here));
 a17 ((𝑟121 ,∀), (𝑟151 ,∀)) →((𝑟181 ,out), (𝑞151 ,here));
 b16((𝑞156 ,∀))→((𝑟156 ,here));
configuration after t6: 𝑟51𝑟101 𝑟121 𝑟156 𝑞153 ;

Note that this is identical to the time t4 and so from now on the process in this membrane will be
repeated.
Let's see what resources are sent out of the system:
t1: λ; t2: λ; t3: λ; t4: 𝑟161 𝑟171 𝑟181 ; t5: 𝑟161 𝑟171 𝑟181 ; t6: 𝑟161 𝑟171 𝑟181 ;

The parallel activity in region i, at time t is denoted by ℎ𝑖𝑡 and is represented by a word over Ai,
which consists of all actions executed in the region at time t. The system parallel activity at time t is a m-
tuple h(t)=(ℎ1𝑡 ,…, ℎ𝑚𝑡), where each ℎ𝑖𝑡 is parallel activity in region i at time t.
The evolutionary trajectory of the system S at time t is calculated as follows:

(i) H0=(λ,…,λ);
(ii) Ht=(∏ ℎ1𝑧𝑡

𝑧=0 ,…, ∏ ℎ𝑚𝑧𝑡
𝑧=0).

Let Wt=(𝑤1𝑡,…, 𝑤𝑚𝑡) the system configuration at time t. We denote by W the set of all possible
configurations of the system W={ Wt|t≥0}. If W is a finite set we say that the system is bounded.

Proposition 2.1. Let S, a bounded aggregation system of actions with membrane and
Ht=(α1𝑡 ,…, α𝑚𝑡) the evolutionary trajectory of the system at time t. Then there is a z>0 and αi,β i, γ𝑖

𝑡 ∈𝐴𝑖∗;
1≤i≤m, so that: Ht=(α1(β1)τ(t) γ1

ν(𝑡),…, αm(βm)τ(t)
 γ𝑚
ν(𝑡)) for all t≥p.

Proof. Let Wt=(𝑤1𝑡,…, 𝑤𝑚𝑡) the system configuration at time t. Because S is bounded there exists
p and q, p<q, so that we have Wp=Wq. We believe that p and q are the smallest with this property. Then
for t≥p we have Wt= Wt+(q=p). But there is a bijective correspondence between Wt and h(t) and therefore
h(t)=h(t+p-q) for all t≥p.

We denote: z=p, τ(t)=[(t-p+1)/(q-p)], ν(t)= (t-p+1) mod(q-p), and for all 1≤i≤m we have
α i=∏ ℎ𝑖𝑧

𝑝−1
𝑧=0 R , βi=∏ ℎ𝑖𝑧

𝑞
𝑧=𝑝 , γ𝑖

ν(𝑡)=∏ ℎ𝑖𝑧
ν(𝑡)
𝑧=𝑝 . In these conditions the sentence is verified.

Note that in example 2.1. we have: z=4, ν(t)∈{0,1},
α1=b15, α2=b1b2b4a1a1a2, α3=b6b7b9a6a6a7a8,
β1= a15a16a17a15a16a17b16, β2= a1a2b11b21a1a2b41, β3= a6a7a8b61b71a6a7a8b91,
γ1
0=λ, γ1

1= a15a16a17, γ2
0=λ, γ2

1= a1a2b11b21, γ3
0=λ, γ3

1= a6a7a8b61b71.

3. Conclusions
The purpose of this model is to demonstrate the usefulness of the membrane and super-cell in the

production process modeling by combining independent actions. A process as defined, will evolve into a
parallel and distributed environment. Starting the process implies parallel activation of all actions of
aggregation.

This model can be developed in similar conditions, by adding new features and additional
functionality. Note that, impliedly, we considered that all actions are executed in a unit of time. It is
evident that in this model we can take into consideration the introduction of the execution time of each
action.

In the model presented in this work, the number of membranes remain constant during evolution.
We can consider that the system contains some actions that multiply or dissolve membranes in certain
conditions. All this, and more, will be the subjects of other future works.

39

References
• Calude Ch. S., Păun Gh., Computing with Cells and Atoms an introduction to quantum, DNA and

membrane computing, Taylor & Francis ,(2001).
• Dassow J., Păun Gh., On the power of membrane computing, J. Universal Computer Sci., 5, 2,

33-49, (1999).
• Gh. Paun, Computing with membranes, J. Computer System Sciences,2000), in press, and TUCS

Research Report No. 208, November, (http://www.tucs.fi),(1998).
• Gh. Paun, Computing with membranes - A variant: P systems with polarized membranes, Intern.

J. of Foundations of Computer Science,11, 1 (2000), 167-182, and CDMTCS Research Report
No. 098,(ww. cs.auckland.ac.nz/CDMTCS),(1999).

• Mowshowitz A., Virtual Organization: A vision of Management in the Information Age, The
Information, (1994).

• Vasile Craciunean, A model of optimal aggregation of actions in manufacturing processes -
ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 12, ISSUE 4/2014,p.
30-35,(2014).

• Vasile Craciunean,Generative grammars in actions aggregation- ACADEMIC JOURNAL OF
MANUFACTURING ENGINEERING, VOL. 12, ISSUE 4/2014,p.36-41,(2014).

• Vasile Craciunean, A Linguistic Model of Agregation in Virtual Manufacturing Processes -
ACADEMIC JOURNAL OF MANUFACTURING ENGINEERING, VOL. 12, ISSUE 3/(2014).

40

