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Accurate knowledge of physical quantities of materials 
represents an essential aspect in controlled processes in 
terms of manufacturing, handling, and holding. In order to 
assess the quality of food materials, it is vital to be familiar 
with physical properties of materials, especially mechanical, 
rheological and thermophysical characteristics (Božiková 
and Hlaváč, 2010).

This paper deals primarily with rheological properties 
that are considered to be complex material characteristics. 
Rheological properties have been measured for different 
food materials: milk (Hlaváč and Božiková, 2011; Kumbár and 
Nedomová, 2015), strawberry mash (Bukurov et al., 2012), 
quince puree (Bikić et al., 2012), chocolate (Glicerina et al., 
2013; Kumbár et al., 2018), mixture of apple pomace and 
wheat flour (Diósi et al., 2014), honey (Hlaváč and Božiková, 
2012), liquid egg products (Kumbár et al., 2015), wort 
(Hlaváč et al., 2016), etc. Viscosity is significant rheological 
property in terms of liquid products. It primarily affects the 
engine operation, since a higher fuel viscosity can result 
in malfunctions in feeding system and deposit formation 
in combustion chamber, filters, etc. (Corsini et al., 2015). 
Viscosity can be expressed as fluid resistance to flow and 
usually related physical unit to it is Pa·s. Temperature highly 
affects viscosity. Molecular structure causes the differences 
in temperature effect on viscosity of fluids and gases. With 
increment in temperature, it is possible to observe decreasing 
trend in liquid viscosity. Liquid molecules continuously 
move into the vacancies, and although this process allows 
the flow, it still requires energy (Bird et al., 1960). Fluid flows 

easily at higher temperatures and activation energy is better 
observable in such cases. Temperature impacts on viscosity 
can be expressed by means of an Arrhenius type equation 
(Eq. 1):

	 	 (1)

where:
η	 –	 reference value of dynamic viscosity
EA	 –	 activation energy
R	 –	 gas constant
T	 –	 absolute temperature (Figura and Teixeira, 2007)

Liquid molecules are closely spaced and attracted 
by strong cohesive forces and temperature impacts on 
viscosity can also be explained by these forces (Munson et 
al., 1994). Increase in temperature will cause decrease in 
these forces and liquid can flow more easily. Due to this fact, 
liquid viscosity decreases with temperature rise. Viscosity 
of majority of liquids is constant until the pressure reaches 
value of 10.134 MPa. However, by exceeding this value, 
viscosity increases with each increment in pressure (Sahin 
and Sumnu, 2006).

Ratio of dynamic viscosity η to fluid density ρ at identical 
temperature is called kinematic viscosity and can be 
expressed as follows:

		  (2)
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Physical unit of this ratio is m2·s-1. Reciprocal value of 
dynamic viscosity η is fluidity φ and its unit is Pa-1·s-1.

		  (3)

Oils extracted from plants have been utilized for 
millennia. Vegetable oil production includes oil removal 
from plant components – seeds in the majority of cases. 
This process can be performed either by mechanical or 
chemical extraction. The former is carried out by means 
of oil mill; the latter utilizes solvent. Subsequently, 
extracted oil is purified. Furthermore, it can be refined or 
chemically altered if necessary. Many vegetable oils are 
consumed directly or indirectly as ingredients in food. 
Moreover, they can be utilized in cooking of meals and 
this process includes their heating. Vegetable oils consist 
of triglycerides (Rafiq et al., 2015). Properties of different 
vegetable oils were examined by numerous authors. 
Stedile et al. (2015) compared physical properties and 
chemical composition of various bio-oils. Moser et al. (2009) 
analysed composition and physical properties of selected 
vegetable oils (cress, field pennycress and soybean). 
Impacts of composition on vegetable oils oxidation using 
differential scanning calorimetry was studied by Qi et al. 
(2016). Eight vegetable oils were subjected to examination: 
refined palm, olive, grapeseed, sunflower, corn, soybean, 
safflower and sesame oils. Activation energy of measured 
oils was also determined. Purification of vegetable oils by 
application of metal-organic frameworks was described by 
Vlasova et al. (2016). Authors found out that application of 
metal-organic frameworks enhances the physicochemical 
properties of unrefined vegetable oils (more pleasant 
taste and odour), because free fatty acids and peroxide 
compounds are bound in such manner. Selected physical 
properties of brominated vegetable oil as function of 
temperature were investigated by Thomas et al. (2015). 
They found out that it showed significantly higher values 
of density and dynamic viscosity than natural oils. This is 
probably a result of enhanced dispersion forces, rather 
than enhanced polarity upon bromination. Electrical 
properties of pumpkin seed oil were investigated by Prevc 
et al. (2015). They found out that typical roasted pumpkin 
seed oil shows higher electrical conductivity in contrast to 
unrefined extra virgin olive oils and refined sunflower oils. 
It is due to the fact that electrical conductivity tends to 
correlate with concentration of phospholipids and metals 
in oil. Pillai et al. (2016) have described structure, chemical 
composition and physical properties of metathesized palm 
oil and novel polyol derivatives. Kelly et al. (2014) have 
observed physical properties of spray-dried dairy powders 
mixed with various vegetable oils (sunflower oil, palm oil 
and its mixtures). Thermal properties of oils extracted from 
raspberry and blackberry seeds using differential scanning 
calorimetry were studied by Micić et al. (2014).

Vegetable oils are frequently included as an ingredient in 
multiple manufactured products. Vegetable oils functioning 
as additives in biodegradable films and coatings in terms 
of active food packaging were examined by Atarés and 
Chiralt (2016). Chen et al. (2014) have dealt with impacts of 
waste edible vegetable oil on rejuvenation of aged asphalt 

binders considering the physical, chemical and rheological 
properties. The results show that it can efficiently soften the 
aged asphalt. Both physical and rheological properties of 
aged asphalts can be improved to that of their original state 
if they are treated with optimum waste edible vegetable oil 
dosage. Bounding of masonry units with waste vegetable oil 
was analysed by Heaton et al. (2014). Physical quality and 
moisture content of wooden pellets blended with waste 
vegetable oil were analysed by Mišljenović et al. (2015). The 
results indicate that energy content of wooden pellets was 
significantly increased by adding oil. On the other hand, 
pellet strength was reduced by oil addition due to the lower 
friction on the pellet–die wall contact area. Padmini et al. 
(2016) have investigated a potential of vegetable-oil-based 
nanofluids as cutting fluids in machining. Production of 
alcohol from several vegetable oils was described by Dumont 
et al. (2013). Authors have also determined certain specific 
physical and chemical properties of obtained alcohols. 
Mello et al. (2013) have analysed certain low-toxic metal 
compounds produced during soybean oil polymerization in 
order to produce bio-based resins that could be exploited as 
a binder in printing inks.

Vegetable oils are frequently utilized as alternative fuels 
or lubricants. The tribological, rheological properties, as 
well as microstructure of oleogels on the basis of vegetable 
oils for lubrication purposes were analysed by Martín-
Alfonso and Valencia (2015). Emberger et al. (2015) have 
studied chemical composition and physical properties of 
ten vegetable oils (coconut, palm, high oleic sunflower, 
rapeseed, sunflower, camelina, linseed, soybean, corn, 
jatropha). Furthermore, they also investigated their 
ignition and combustion behaviour after injecting them 
into a constant volume combustion chamber. Ashraful et 
al. (2014) have compared fuel and emission properties, as 
well as engine performance characteristics of biodiesel 
fuels made of several non-edible vegetable oils (karanja, 
polanga, mahua, rubber seed, cotton seed, jojoba, tobacco 
neem, linseed and jatropha). Various biodiesel types with 
different vegetable oils (soybean, rapeseed, mustard, 
canola, palm, sunflower, rice bran, jatropha, karanja and 
used cooking oil) have been analysed by Issariyakul and 
Dalai (2014). Electrochemical impedance spectroscopy 
was utilized in research of biodiesel fuels made of 
different vegetable oils (canola, soybean, sunflower, and 
corn) by M’Peko et al. (2013). Authors have presented 
correlations between electric properties (resistivity and 
dielectric constant) and dynamic viscosity. Utilization 
of vegetable oils as a fuel in burners was studied by San 
José et al. (2015). During the investigation, authors used 
four vegetable oils made of rapeseed, soya, sunflower 
and refined seed. For the optimal combustion process, 
knowledge of physical properties (density, viscosity, etc.) 
and composition of the fatty acids is essential. Cermak 
et al. (2013) have compared properties of oils made of 
modern crops (lesquerella, field pennycress, meadowfoam 
and cuphea) with common commodity vegetable oils. They 
found out that all oils showed unique preconditioning them 
for lubrication purposes. Certain blended aviation biofuels 
made primarily of esterified Jatropha curcas with addition 
of waste vegetable oils were analysed by Baroutian et al. 
(2013).
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Measurements were carried out under laboratory regime 
(temperature – 20 °C; atmospheric pressure – 1,013 hPa; 
relative air humidity – 45%) on two samples of vegetable oil 
purchased at local market. The first sample was sunflower 
oil and other one was extra virgin olive oil. Rheological 
parameters – dynamic viscosity, kinematic viscosity, 
fluidity and density – were subjected to analyses during 
experiments. At first, samples were cooled to temperature 
of 3 °C. Subsequently, dynamic viscosity and density were 
measured at particular temperature values during the 
temperature stabilisation in approximate temperature 
range 5–32 °C. Dynamic viscosity was recorded utilizing 
digital rotational viscometer Anton Paar (DV-3P). This 
device works on principle founded on dependency of 
sample resistance to the probe rotation. Moreover, density 
of vegetable oils was measured utilizing densimeter 
Anton Paar DMA 4500 M and was recorded at the same 
temperatures as dynamic viscosity. Together with recorded 
dynamic viscosity values, obtained density values were 
utilized in kinematic viscosity calculation (Eq. 2). Reciprocal 
value of dynamic viscosity (fluidity) was also determined 
(Eq. 3). Correlations between rheological parameters and 
temperature were observed and properties of vegetable oils 
were compared.

It is possible to depict the temperature dependencies 
of dynamic viscosity for observed oils in form of 
decreasing  exponential functions (Eq. 4). The same is 
true for temperature dependencies of kinematic viscosity 
(Eq. 5). Considering the temperature dependencies of 
fluidity,  trends can be shown by increasing exponential 
functions (Eq. 6). Decreasing linear function (Eq. 7) 
described the trends in terms of temperature dependencies 
of density:

 	  	

	  	 (6, 7)

where:
t	 –	 temperature
to – 1 °C; A, B, C, D,  E, F, G, H – constants dependent on 

material type and methods of processing and 
storage

Considering the vegetable oils dynamic viscosity and 
density, obtained temperature dependencies of observed 
vegetable oils are shown in Fig. 1 and Fig. 2. It is evident 
from Fig. 1 that dynamic viscosity of oils shows decreasing 
trends with increments in temperature. It is possible to 
visualise this progress by means of decreasing exponential 
function, which is in compliance with Arrhenius equation 
(Eq. 1). Similar conclusions were made by authors Diamante 
and Lan (2014) and Thomas et al. (2015). Regression 
coefficients and coefficients of determination are shown in 
Table 1. Furthermore, Fig. 1 shows that values of dynamic 
viscosity of extra virgin olive oil were higher than those of 
sunflower oil, which could have been caused by different 
composition of oils.

Dependencies of oil density on temperature are 
presented in Fig. 2. It is evident that values of density are 
decreasing with increasing temperature for both samples. 
Linear decreasing function was utilized for description 
of the progress at given temperature range. Thomas et al. 
(2015) deployed the identical dependency type. Density of 
sunflower oil was higher in contrast to extra virgin olive oil 
sample. Similar results for sunflower oil were obtained by 
Emberger et al. (2015), San José et al. (2015), and for olive oil 
by Tanilgan et al. (2007). 

Material and methods

Table 1	 Coefficients A, B, C, D, E, F, G, H of regression equations (4, 5, 6 and 7) and coefficients of determinations (R2)

Regression equations (4, 5, 6, 7)

Coefficients

Sample A (mPa·s) B (1) R2

Sunflower oil 251.491 0.028017 1.000000

Olive oil 261.117 0.022905 0.999958

Sample C (mm2·s-1) D (1) R2

Sunflower oil 269.187 0.027260 0.999999

Olive oil 281.934 0.022151 0.999960

Sample E (Pa-1·s-1) F (1) R2

Sunflower oil 3.98038 0.027965 0.999996

Olive oil 3.82843 0.0229206 0.999937

Sample H (kg·m-3) G (kg·m-3) R2

Sunflower oil 933.866 0.682059 0.999997

Olive oil 926.042 0.684142 0.999996

Results and discussion
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Fig. 3 and Fig. 4 depict temperature 
dependencies of kinematic viscosity 
and fluidity observed in analysed 
samples. For both samples, decreasing 
function describes dependencies of 
kinematic viscosity on temperature. 
Table 1 provides values of regression 
coefficients and coefficients of 
determination. In contrast to extra 
virgin olive oil, sunflower oil showed 
higher values of kinematic viscosity 
(Fig. 3). This is most likely due to same 
reason as in case of dynamic viscosity. 
Temperature dependencies of fluidity 
are depicted in Fig. 4. It is obvious that 
with increase in temperature, there is 
also an increase in fluidity. Ultimately, 
Table 1 provides values of regression 
coefficients and coefficients of 
determination. It is possible to explain 
the proportion of curves shown in 
Fig. 4 in similar manner as in previous 
dependencies.

It is evident from Table 1 that 
coefficients of determinations showed 
very high values in the given range 
(0.99993–1.0) in all cases.

Conclusion
Physical properties of food 

materials must be analysed individually 
due to the very complex composition 
of these materials. Properties of 
these materials can be influenced 
in multiple ways (e.g. manipulation, 
external conditions, etc.). Rheological 
properties of selected vegetable 
oils were observed and subjected 
to analysis in this paper. Impacts of 
temperature on measured samples of 
vegetable oils were investigated and 
their properties were compared.
In terms of dynamic and kinematic 
viscosities, temperature dependencies 
of vegetable oils had decreasing 
shape (Fig. 1 and Fig. 3). Considering 
the temperature dependencies of 
fluidity, there have been observed an 
increasing shape (Fig. 4). In order to 
stay in line with Arrhenius equation 
(1), exponential functions were 
utilized for expression of temperature 
dependencies of rheological 
properties. Similar results were also 
achieved by other authors (Diamante 
and Lan, 2014; Thomas et al., 2015).
Linear decreasing functions were 
utilized for expression of temperature 
dependencies of density for observed 
oils in  the given temperature range 
(Fig. 2). Several other authors 
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(Emberger et al., 2015; San José et al., 
2015; Tanilgan et al., 2007) achieved 
similar results for density of vegetable 
oils.
It was observed that values of dynamic 
and kinematic viscosities for extra 
virgin olive oil were higher than for 
sunflower oil, which could have been 
caused by different composition of 
oils. Fluidity and density of extra virgin 
olive oil showed lower values most 
likely for the same reason as well.
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