Experimental setup for light-to-heat NIR conversion measurements of gold nanoparticle solutions

Open access


In recent years, there is a constantly increasing interest in the application of nanoparticles for cancer diagnosis and cancer therapy. In this respect, the most promising nano-objects at present are the gold nanoparticles. A very convenient and powerful property of these objects is their ability to increase their temperature under electro-magnetic irradiation with certain wavelength. In our research we have directed our efforts toward particular nano-objects specifically sensitive to electromagnetic radiation in the near-infrared region (NIR). In order to study the photothermic properties of the solutions of gold nanoparticles in the NIR we constructed a specific electronic setup consisting of a laser system with interchangeable laser diodes with different wavelength NIR light, a thermally-insulated cuvette-holder compartment with temperature measuring probes and a NIR spectrometer to control the stimulated fluorescence emission of the nanoparticle solutions. The temperature measurement compartment with the thermal-insulated cuvette holder was designed to maintain the solutions’ temperature at a fixed value right before the moment of laser irradiation. To maintain the measurement setup at a fixed temperature before the irradiation we used a thermal stabilized system based on two Peltier cells with electronic temperature control. The temperatures of the ambient air and the temperature of the cuvette walls were continuously measured in order to make corrections about the temperature dissipation during the irradiation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Abeer S. Future Medicine: Nanomedicine JIMSA2012 25 No. (3) 187 – 192

  • [2] Freitas R. A. What is nanomedicine? Nanomedicine20051 (1) 2 – 9.

  • [3] Sadanandam N. Nanomedicine – the basis The West London Medical Journal 20113 (3) 11 – 14

  • [4] Ranganathan R.; Madanmohan S.; Kesavan A.; Baskar G.; Krishnamoorthy Y. R.; Santosham R.; Ponraju D.; Rayala S. K.; Venkatraman G. Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications Int. J. Nanomedicine20127 1043 – 1080

  • [5] El-Sayed M.A. Some interesting properties of metals confined in time and nanometer space of different shapes Acc Chem Res 200134(4) 257 – 264.

  • [6] Borzabadi-Farahani A.; Borzabadi E.; Lynch E. Nanoparticles in orthodontics a review of antimicrobial and anti-caries applications Acta Odontologica Scandinavica201472 (6) 413 – 417

  • [7] Allen T. M.; Cullis P. R. Drug delivery systems: entering the mainstream Science2004303 (5665) 1818 – 1822.

  • [8] Nie S.; Xing Y.; Kim G. J.; Simons J. W. Nanotechnology applications in cancer Ann Rev Biomed Eng20079 257 – 88.

  • [9] Link S. El-Sayed M. A. Shape and size dependence of radiative non-radiative and photothermal properties of gold nanocrystals Int Rev Phys Chem2000 19(3) 409 – 53.

  • [10] Link S. El-Sayed M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 1999 103(40) 8410 – 8426.

  • [11] Huang X. Jain P. K. El-Sayed I. H. El-Sayed M. A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy Nanomed2007 2(5) 681 – 693.

  • [12] Skrabalak S. E. Chen J. Sun Y. Lu X. Au L. Cobley C. M. et al. Gold nanocages: synthesis properties and applications Acc Chem Res2008 41(12) 1587–1595.

  • [13] Jain P. K. Huang X. El-Sayed I. H. El-Sayed M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging sensing biology and medicine Acc Chem Res 2008 41(12) 1578 – 1586.

  • [14] Xia Y. Halas N.J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures MRS Bull2005 30(5) 338 – 43.

  • [15] Yu Y. Y. Chang S. S. Lee C. L. Wang C. R. C. Gold nanorods: electrochemical synthesis and optical properties J Phys Chem B1997 101(34) 6661 – 6664.

  • [16] Murphy C. J. Sau T. K. Gole A. M. Orendorff C. J. Gao J. Gou L. et al. Anisotropic metal nanoparticles: synthesis assembly and optical applications J Phys Chem B2005 109(29) 13857–13870.

  • [17] Sun Y. Mayers B. T. Xia Y Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors Nano Lett2002 2(5) 481 – 485.

  • [18] Bakr O. M. Wunsch B. H. Stellacci F. High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles Chem. Mater. 2006 18 (14) 3297 – 3301 DOI: 10.1021/cm060681i

  • [19] Sokolov K. Aaron J. Hsu B. Nida D. Gillenwater A. Follen M. et al. Optical systems for in vivo molecular imaging of cancer Technol Cancer Res Treat2003; 2(6) 491 – 504.

  • [20] Loo C. Lin A. Hirsch L. Lee M. H. Barton J. Halas N. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer Technol Cancer Res Treat2004 3(1) 33 – 40.

  • [21] Chen J. Wang D. Xi J. Au L. Siekkinen A. Warsen A. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells Nano Lett 2007 7(5) 1318 – 1322.

  • [22] Huang X. Jain P. K. El-Sayed I. H. El-Sayed M. A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles Photochem Photobiol2006 82(2) 412 – 417.

  • [23] Hirsch L. R. Stafford R. J. Bankson J. A. Sershen S. R. Rivera B. Price R. E. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance Proc Natl Acad Sci USA2003 100(23) 13549–13554.

  • [24] Huang X. El-Sayed I. H. Qian W. El-Sayed M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods J Am Chem Soc2006 128(6) 2115–2120.

  • [25] De Rosa M. De Nardo L. Bello M. Uzunov N. Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions Acta Scientifica Naturalis2017 Vol 4 No 1 61-69

  • [26] Hart D. Power Electronics. McGraw - HIll. (2010).

  • [27] Palmer K. F. Williams D. Optical properties of water in the near infrared Journal of the Optical Society of America1974 64 8 1107 – 1110.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 14
PDF Downloads 87 87 4