A thermodynamic model for solution behavior and solid-liquid equilibrium in Na-K-Mg-Ca-Al(III)-Fe(III)-Cr(III)-Cl-H2O system from low to very high concentration at 25°C

Open access

Abstract

In this study we evaluated new mixing (θ and ψ) Pitzer parameters, and developed models for solution behavior and solid liquid equilibria for the following mixed systems: 1) KCl-AlCl3-H2O, 2) KCl-FeCl3-H2O, 3) KCl-CrCl3-H2O, 4) MgCl2-AlCl3-H2O, 5) MgCl2-FeCl3-H2O, 6) MgCl2-CrCl3-H2O, 7) CaCl2-AlCl3-H2O, 8) CaCl2-FeCl3-H2O, and 9) CaCl2-CrCl3-H2O at 25°C. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The values of the binary parameters for the binary sub-systems needed here to parameterize models for mixed systems are taken from our previous studies. Mixing solution parameters are evaluated in this study using activity (when available) and solubility data. Following an approach in our previous modeling studies on M(III) chloride and sulfate systems, in this work we accept that complex Al(III), Cr(III), and Fe(III) aqueous species do not exist in solutions. We test the new models by comparing model predictions with experimental data (activity data for unsaturated solutions and solubility data in ternary systems). The agreement between model predictions and experimental data is very good. Combining present parameterization, with our M(III) models developed previously we fully complete our at 25°C model for the 8th component system Na-K-Mg-Ca-Al(III)-Cr(III)-Fe(III)-Cl-H2O. The resulting model calculates solubilities and solution activities to high solution concentration within experimental uncertainty. Limitations of the model due to data insufficiencies are discussed. The resulting parameterization was developed for the Pitzer formalism based PHREEQC database.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]. Pitzer K. Thermodynamics of electrolytes. I. Theoretical basis and generalequations J. Phys. Chem. 197377 268-277.

  • [2]. Pitzer K. in Activity Coefficients in Electrolyte Solutions 2nd ed. CRC Press Boca Raton 1991.

  • [3]. Harvie C.; Moller N.; Weare J. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta198448 723-751.

  • [4]. Christov C. Thermodynamic study of the Na-Cu-Cl-SO4 -H2O system at the temperature 298.15 K J. Chem. Thermodynamics200032 285-295.

  • [5]. Christov C. Thermodynamics of formation of double salts and solid solutions from aqueous solutions J. Chem. Thermodynamics200537 1036-1060.

  • [6]. Greenberg J.P.; Moller N. The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C Geochim. Cosmochim. Acta198953 2503-2518.

  • [7]. Christov C.; Moller N. A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature Geochim.Cosmochim. Acta200468 1309-1331.

  • [8]. Christov C. An isopiestic study of aqueous NaBr and KBr at 50°C. Chemical Equilibrium model of solution behavior and solubility in the NaBr-H2O KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature Geochim.Cosmochim. Acta200771 3357-3369.

  • [9]. Christov C. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C J. Chem. Eng. Data200954 627-635.

  • [10]. Lassin A.; Christov C.; André L.; Azaroual M. Chemistry of Li-Na-K-OH-H2O brines up to high concentrations and temperatures Mineralogical Magazine201175 A1272.

  • [11]. Lassin A.; Christov C. André L.; Azaroual M. Chemistry of H-Li-Na-K-Cl-H2O brines to high concentrations and temperatures Mineralogical Magazine201276 No. 6 1977.

  • [12]. Lassin A.; Christov C.; André L.; Azaroual M. A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0o to 250°C American Journal of Science2015315 204-256.

  • [13]. Christov C.; Moller N. A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature Geochim.Cosmochim. Acta200468 3717-3739.

  • [14]. Moller N.; Christov C.; Weare J. Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. in Proceedings of 31th Workshop on Geothermal Reservoir Engineering Stanford University Stanford California January 30 –February 20061 (8 pages).

  • [15]. Moller N.; Christov C.; Weare J. Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. in Proceedings of 32th Workshop on Geothermal Reservoir Engineering Stanford University Stanford California January 2007 22-24 (8 pages).

  • [16]. André L.; Christov C.; Lassin A. Azaroual M. Water Rock Interaction [WRI14]Thermodynamic behavior of FeCl3-H2O and HCl-FeCl3-H2O systems - A Pitzer Model at 25°C Procedia Earth and Planetary Science20137 14-18.

  • [17]. André L.; Christov C.; Lassin A.; Azaroual M. Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C Acta Scientifica Naturalis20185 6-16.

  • [18]. Lach A.; André L.; Guignot S.; Christov C.; Henocq P.; Lassin A. A Pitzer parameterization to predict solution properties and salt solubility in the H-Na-K-Ca-Mg-NO3-H2O system at 298.15 K” Journal of Chemical & Engineering Data201863 787−800.

  • [19]. Christov C.; Zhang M.; Talman S.; Reardon E.; Yang T. Review of issues associated with evaluation of Pitzer interaction parameters Mineralogical Magazine201276 No. 6 1578.

  • [20]. Christov C. Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K. CALPHAD 2001 25(3) 445-454.

  • [21]. Christov C. Thermodynamics of formation of ammonium sodium and potassium alums and chromium alums CALPHAD2002 26 85-94.

  • [22]. Christov C. Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums CALPHAD200226 341-352.

  • [23]. Christov C. Thermodynamic study of the co-crystallization of ammonium sodium and potassium alums and chromium alums CALPHAD200327 153-160.

  • [24]. Christov C.; Dickson A.; Moller N. Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0o to 100°C J. Solution Chem. 200736 1495-1523.

  • [25] André L.; Christov C.; Lassin A.; Azaroual M. Pitzer ion-interaction parameters for Al(III) in the (H-Na-K-Ca-Mg-Cl-H2O} system up to salts solubility at 298.15 K ABC-Salt IV Workshop 2015 Apr. 2015 Heidelberg Germany

  • [26]. Christov C. Thermodynamic study of aqueous sodium potassium and chromium chloride systems at the temperature 298.15 K J. Chem. Thermodynamics200335 909-917.

  • [27]. Christov C.; Ivanova K.; Velikova S.; Tanev S. Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K J. Chem. Thermodynamics200234 987-994.

  • [28]. Christov C. Thermodynamic study of the KCl -K2SO4 - K2Cr2O7-H2O system at the temperature 298.15 K CALPHAD199822 449-457.

  • [29]. Christov C. Thermodynamic study of the NaCl - Na2SO4 - Na2Cr2O7-H2O system at the temperature 298.15 K CALPHAD 2001 25 11-17.

  • [30]. Christov C. Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K J. Chem. Thermodynamics2004 36 223-235.

  • [31]. Christov C. Study of (m1KCl + m2MeCl2)(aq) and (m1K2SO4 + m2MeSO4)(aq) where m denotes molality and Me denotes Cu or Ni at the temperature 298.15 K J. Chem. Thermodynamics199931 71-83.

  • [32]. Christov C. Isopiestic Determination of the osmotic coefficients of aqueous MgCl2-CaCl2 mixed solution at 25°C and 50°C. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O and MgCl2-CaCl2 -H2O systems to high concentration at 25°C and 50°C J. Chem. Eng. Data200954 627-635.

  • [33]. Linke W. Solubilities Inorganic and Metal-Organic Compounds (4th ed.) Vols 1 and 2 American Chemical Society Washington 1965.

  • [34]. Gmelin’s Handbuch der Anorganischen Chemie Eisen Al [B]. Chemie Berlin 1932.

  • [35]. Rumyantsev A.V.; Hagemann S.; Moog H.C. Isopiestic investigation of the systems Fe2(SO4)3– H2SO4–H2O FeCl3–H2O and Fe(III)–(Na K Mg Ca)Cln–H2O at 298.15 K Zeitschrift fur Physikalische Chemie 2004 218 1089–1127.

  • [36] Farelo F.; Fernandes C.; Avelino A. Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O KCl+NH4Cl+ H2O NaCl+LiCl+ H2O KCl+LiCl+ H2O NaCl+AlCl3+ H2O and KCl+AlCl3+ H2O at T= (298 to 333) K” J. Chem. Eng. Data200550 1470-1477.

  • [37] Malquori G. Atti Accad. Lincei19275 576-578 (Data given in [33]).

  • [38] Malquori G. Gazz. Chim. Ital. 192757 661-666 (Data given in [33]).

  • [39] Atbir A.; El Hadek M.; Cohen-Adad R. Diagramme de phases du système ternaire KCl-FeCl3-H2O; Isothermes 15 et 30°C J. Phys. IV France2001. 11 Pr10-187-190.

  • [40] Malquori G. Gazz. Chim. Ital. 192858 891-898 (Data given in Linke [33]).

  • [41] Patel K. Seshardi S. Phase rule study of quaternary system KCl-AlCl3-MgCl2-H2O at 25 °C Ind. J. Chem.1966 6 379–381.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 115 115 14
PDF Downloads 86 86 13