A thermodynamic model for solution behavior and solid-liquid equilibrium in Na-K-Mg-Ca-Al(III)-Fe(III)-Cr(III)-Cl-H2O system from low to very high concentration at 25°C

Open access

Abstract

In this study we evaluated new mixing (θ and ψ) Pitzer parameters, and developed models for solution behavior and solid liquid equilibria for the following mixed systems: 1) KCl-AlCl3-H2O, 2) KCl-FeCl3-H2O, 3) KCl-CrCl3-H2O, 4) MgCl2-AlCl3-H2O, 5) MgCl2-FeCl3-H2O, 6) MgCl2-CrCl3-H2O, 7) CaCl2-AlCl3-H2O, 8) CaCl2-FeCl3-H2O, and 9) CaCl2-CrCl3-H2O at 25°C. The solubility modeling approach, implemented to the Pitzer specific interaction equations is employed. The values of the binary parameters for the binary sub-systems needed here to parameterize models for mixed systems are taken from our previous studies. Mixing solution parameters are evaluated in this study using activity (when available) and solubility data. Following an approach in our previous modeling studies on M(III) chloride and sulfate systems, in this work we accept that complex Al(III), Cr(III), and Fe(III) aqueous species do not exist in solutions. We test the new models by comparing model predictions with experimental data (activity data for unsaturated solutions and solubility data in ternary systems). The agreement between model predictions and experimental data is very good. Combining present parameterization, with our M(III) models developed previously we fully complete our at 25°C model for the 8th component system Na-K-Mg-Ca-Al(III)-Cr(III)-Fe(III)-Cl-H2O. The resulting model calculates solubilities and solution activities to high solution concentration within experimental uncertainty. Limitations of the model due to data insufficiencies are discussed. The resulting parameterization was developed for the Pitzer formalism based PHREEQC database.

[1]. Pitzer, K., Thermodynamics of electrolytes. I. Theoretical basis and generalequations, J. Phys. Chem., 1973, 77, 268-277.

[2]. Pitzer, K., in Activity Coefficients in Electrolyte Solutions, 2nd ed., CRC Press, Boca Raton, 1991.

[3]. Harvie, C.; Moller, N.; Weare, J., The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25°C., Geochim. Cosmochim. Acta, 1984, 48, 723-751.

[4]. Christov, C., Thermodynamic study of the Na-Cu-Cl-SO4 -H2O system at the temperature 298.15 K, J. Chem. Thermodynamics, 2000, 32, 285-295.

[5]. Christov, C., Thermodynamics of formation of double salts and solid solutions from aqueous solutions, J. Chem. Thermodynamics, 2005, 37, 1036-1060.

[6]. Greenberg, J.P.; Moller, N., The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C, Geochim. Cosmochim. Acta, 1989, 53, 2503-2518.

[7]. Christov, C.; Moller, N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta, 2004, 68, 1309-1331.

[8]. Christov, C., An isopiestic study of aqueous NaBr and KBr at 50°C. Chemical Equilibrium model of solution behavior and solubility in the NaBr-H2O, KBr-H2O and Na-K-Br-H2O systems to high concentration and temperature, Geochim.Cosmochim. Acta, 2007, 71, 3357-3369.

[9]. Christov, C., Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and HCl-MgCl2-H2O systems to high concentration from 0°C to 100°C, J. Chem. Eng. Data, 2009, 54, 627-635.

[10]. Lassin, A.; Christov, C.; André L.; Azaroual M., Chemistry of Li-Na-K-OH-H2O brines up to high concentrations and temperatures, Mineralogical Magazine, 2011, 75, A1272.

[11]. Lassin, A.; Christov, C., André, L.; Azaroual M., Chemistry of H-Li-Na-K-Cl-H2O brines to high concentrations and temperatures, Mineralogical Magazine, 2012, 76, No. 6, 1977.

[12]. Lassin, A.; Christov, C.; André L.; Azaroual M., A thermodynamic model of aqueous electrolyte solution behavior and solid liquid equilibrium in the Li-H-Na-K-Cl-OH-H2O system to a very high concentrations (40 molal) from 0o to 250°C, American Journal of Science, 2015, 315, 204-256.

[13]. Christov, C.; Moller N., A chemical equilibrium model of solution behavior and solubility in the H-Na-K-Ca-Cl-OH-HSO4-SO4-H2O system to high concentration and temperature, Geochim.Cosmochim. Acta, 2004, 68, 3717-3739.

[14]. Moller, N.; Christov, C.; Weare, J., Thermodynamic models of aluminum silicate mineral solubility for application to enhanced geothermal systems. in Proceedings of 31th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January 30 –February 2006, 1, (8 pages).

[15]. Moller, N.; Christov, C.; Weare, J., Thermodynamic model for predicting interactions of geothermal brines with hydrothermal aluminum silicate minerals. in Proceedings of 32th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, January, 2007, 22-24 (8 pages).

[16]. André L.; Christov C.; Lassin A., Azaroual, M., Water Rock Interaction [WRI14],Thermodynamic behavior of FeCl3-H2O and HCl-FeCl3-H2O systems - A Pitzer Model at 25°C, Procedia Earth and Planetary Science, 2013, 7, 14-18.

[17]. André L.; Christov, C.; Lassin A.; Azaroual, M., Thermodynamic model for solution behavior and solid-liquid equilibrium in Na-Al(III)-Fe(III)-Cr(III)-Cl-H2O system at 25°C, Acta Scientifica Naturalis, 2018, 5, 6-16.

[18]. Lach, A.; André, L.; Guignot, S.; Christov, C.; Henocq, P.; Lassin, A., A Pitzer parameterization to predict solution properties and salt solubility in the H-Na-K-Ca-Mg-NO3-H2O system at 298.15 K”, Journal of Chemical & Engineering Data, 2018, 63, 787−800.

[19]. Christov, C.; Zhang, M.; Talman, S.; Reardon, E.; Yang, T., Review of issues associated with evaluation of Pitzer interaction parameters, Mineralogical Magazine, 2012, 76, No. 6, 1578.

[20]. Christov, C., Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K., CALPHAD, 2001, 25(3), 445-454.

[21]. Christov, C., Thermodynamics of formation of ammonium, sodium, and potassium alums and chromium alums, CALPHAD, 2002, 26, 85-94.

[22]. Christov, C., Thermodynamic study of quaternary systems with participation of ammonium and sodium alums and chromium alums, CALPHAD, 2002, 26, 341-352.

[23]. Christov, C., Thermodynamic study of the co-crystallization of ammonium, sodium and potassium alums and chromium alums, CALPHAD, 2003, 27, 153-160.

[24]. Christov, C.; Dickson, A.; Moller N., Thermodynamic modeling of aqueous aluminum chemistry and solid liquid equilibria to high solution concentration and temperature. I. The acidic H-Al-Na-K-Cl-H2O system from 0o to 100°C, J. Solution Chem., 2007, 36, 1495-1523.

[25] André, L.; Christov, C.; Lassin, A.; Azaroual, M., Pitzer ion-interaction parameters for Al(III) in the (H-Na-K-Ca-Mg-Cl-H2O} system up to salts solubility at 298.15 K, ABC-Salt IV Workshop 2015, Apr. 2015, Heidelberg, Germany,

[26]. Christov, C., Thermodynamic study of aqueous sodium, potassium and chromium chloride systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2003, 35, 909-917.

[27]. Christov, C.; Ivanova, K.; Velikova, S.; Tanev, S., Thermodynamic study of aqueous sodium and potassium chloride and chromate systems at the temperature 298.15 K, J. Chem. Thermodynamics, 2002, 34, 987-994.

[28]. Christov, C., Thermodynamic study of the KCl -K2SO4 - K2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 1998, 22, 449-457.

[29]. Christov C., Thermodynamic study of the NaCl - Na2SO4 - Na2Cr2O7-H2O system at the temperature 298.15 K, CALPHAD, 2001, 25, 11-17.

[30]. Christov, C., Pitzer ion-interaction parameters for Fe(II) and Fe(III) in the quinary {Na+K+Mg+Cl+SO4+H2O} system at T=298.15 K, J. Chem. Thermodynamics, 2004 36, 223-235.

[31]. Christov, C., Study of (m1KCl + m2MeCl2)(aq), and (m1K2SO4 + m2MeSO4)(aq) where m denotes molality and Me denotes Cu or Ni, at the temperature 298.15 K, J. Chem. Thermodynamics, 1999, 31, 71-83.

[32]. Christov, C., Isopiestic Determination of the osmotic coefficients of aqueous MgCl2-CaCl2 mixed solution at 25°C and 50°C. Chemical equilibrium model of solution behavior and solubility in the MgCl2-H2O, and MgCl2-CaCl2 -H2O systems to high concentration at 25°C and 50°C, J. Chem. Eng. Data, 2009, 54 627-635.

[33]. Linke, W., Solubilities Inorganic and Metal-Organic Compounds (4th ed.), Vols 1 and 2, American Chemical Society, Washington 1965.

[34]. Gmelin’s Handbuch der Anorganischen Chemie, Eisen, Al [B]. Chemie, Berlin, 1932.

[35]. Rumyantsev, A.V.; Hagemann, S.; Moog, H.C., Isopiestic investigation of the systems Fe2(SO4)3– H2SO4–H2O, FeCl3–H2O, and Fe(III)–(Na, K, Mg, Ca)Cln–H2O at 298.15 K, Zeitschrift fur Physikalische Chemie, 2004, 218, 1089–1127.

[36] Farelo, F.; Fernandes, C.; Avelino, A., Solubilities for Six Ternary Systems: NaCl+NH4Cl+H2O, KCl+NH4Cl+ H2O, NaCl+LiCl+ H2O, KCl+LiCl+ H2O, NaCl+AlCl3+ H2O and KCl+AlCl3+ H2O at T= (298 to 333) K”, J. Chem. Eng. Data, 2005, 50, 1470-1477.

[37] Malquori, G., Atti Accad. Lincei, 1927, 5, 576-578 (Data given in [33]).

[38] Malquori, G., Gazz. Chim. Ital., 1927, 57, 661-666 (Data given in [33]).

[39] Atbir, A.; El Hadek, M.; Cohen-Adad, R., Diagramme de phases du système ternaire KCl-FeCl3-H2O; Isothermes 15 et 30°C, J. Phys. IV France, 2001,. 11, Pr10-187-190.

[40] Malquori, G., Gazz. Chim. Ital., 1928, 58, 891-898 (Data given in Linke [33]).

[41] Patel, K., Seshardi S., Phase rule study of quaternary system KCl-AlCl3-MgCl2-H2O at 25 °C, Ind. J. Chem., 1966, 6, 379–381.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 70 70 27
PDF Downloads 57 57 28