Experimental setup for light-to-heat NIR conversion measurements of gold nano-particles’ solutions

Open access


In recent years, there is a constantly increasing interest in the application of nanoparticles for cancer diagnosis and cancer therapy. In this respect, the most promising nano-objects at present are the gold nanoparticles. A very convenient and powerful property of these objects is their ability to increase their temperature under electro-magnetic irradiation with certain wavelength. In our research we have directed our efforts toward particular nano-objects specifically sensitive to electromagnetic radiation in the near-infrared region (NIR). In order to study the photothermic properties of the solutions of gold nanoparticles in the NIR we constructed a specific electronic setup consisting of a laser system with interchangeable laser diodes with different wavelength NIR light, a thermally-insulated cuvette-holder compartment with temperature measuring probes and a NIR spectrometer to control the stimulated fluorescence emission of the nanoparticles’ solutions. The temperature measurement compartment with the thermal-insulated cuvette holder was designed to maintain the solutions’ temperature at a fixed value right before the moment of laser irradiation. To maintain the measurement setup at a fixed temperature before the irradiation we used a thermal stabilized system based on two Peltier cells with electronic temperature control. The temperatures of the ambient air and the temperature of the cuvette walls were continuously measured in order to make corrections about the temperature dissipation during the irradiation.

[1]. Abeer, S., Future Medicine: Nanomedicine, JIMSA, 2012, Vol. 25 No. 3, 187 – 192

[2]. Freitas, R. A., What is nanomedicine?, Nanomedicine, 2005,1 (1), 2 – 9.

[3]. Sadanandam, N., Nanomedicine – the basis, The West London Medical Journal 2011 Vol 3 No 3 pp 11 – 14

[4]. Ranganathan, R.; Madanmohan, S.; Kesavan, A.; Baskar, G.; Krishnamoorthy, Y. R.; Santosham, R.; Ponraju, D.; Rayala, S. K.; Venkatraman, G., Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications, Int. J. Nanomedicine, 2012, 7, 1043 – 1080

[5]. El-Sayed, M.A., Some interesting properties of metals confined in time and nanometer space of different shapes, Acc Chem Res, 2001, 34(4), 257 – 264.

[6]. Borzabadi-Farahani, A.; Borzabadi, E.; Lynch, E., Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications, Acta Odontologica Scandinavica, 2014, 72 (6), 413 – 417

[7]. Allen, T. M.; Cullis, P. R., Drug delivery systems: entering the mainstream, Science, 2004, 303 (5665), 1818 – 1822.

[8]. Nie, S.; Xing, Y.; Kim, G. J.; Simons, J. W., Nanotechnology applications in cancer, Ann Rev Biomed Eng, 2007, 9, 257 – 88.

[9]. Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals, Int Rev Phys Chem, 2000, 19(3), 409 – 53.

[10]. Link, S., El-Sayed, M. A., Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J Phys Chem B, 1999, 103(40), 8410 – 8426.

[11]. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, Nanomed, 2007, 2(5), 681 – 693.

[12]. Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M., et al., Gold nanocages: synthesis, properties and applications, Acc Chem Res, 2008, 41(12), 1587–1595.

[13]. Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A., Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine, Acc Chem Res 2008, 41(12), 1578 – 1586.

[14]. Xia, Y.; Halas, N. J., Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, MRS Bull, 2005, 30(5), 338 – 43.

[15]. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: electrochemical synthesis and optical properties, J Phys Chem B, 1997, 101(34), 6661 – 6664.

[16]. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; et al., Anisotropic metal nanoparticles: synthesis, assembly and optical applications, J Phys Chem B, 2005, 109(29), 13857–13870.

[17]. Sun, Y.; Mayers, B. T.; Xia, Y., Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett, 2002, 2(5), 481 – 485.

[18]. Bakr, O. M.; Wunsch, B. H.; Stellacci, F., High-Yield Synthesis of Multi-Branched Urchin-Like Gold Nanoparticles, Chem. Mater., 2006, 18 (14), 3297 – 3301, DOI: 10.1021/cm060681i

[19]. Sokolov, K.; Aaron, J.; Hsu, B.; Nida, D.; Gillenwater, A.; Follen M.; et al., Optical systems for in vivo molecular imaging of cancer, Technol Cancer Res Treat, 2003; 2(6), 491 – 504.

[20]. Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; et al., Nanoshell-enabled photonics-based imaging and therapy of cancer, Technol Cancer Res Treat, 2004, 3(1), 33 – 40.

[21]. Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; et al., Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett, 2007, 7(5), 1318 – 1322.

[22]. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A., Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles, Photochem Photobiol, 2006, 82(2), 412 – 417.

[23]. Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price R. E.; et al., Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc Natl Acad Sci USA, 2003, 100(23), 13549–13554.

[24]. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J Am Chem Soc, 2006, 128(6), 2115–2120.

[25]. De Rosa, M.; De Nardo, L.; Bello, M.; Uzunov N., Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions, Acta Scientifica Naturalis, 2017 Vol 4, No 1, 61-69,

[26] Hart D., Power Electronics. McGraw - HIll. 2010, The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York, NY 10020.

[27] Palmer K. F., Williams, D., Optical properties of water in the near infrared, Journal of the Optical Society of America, 1974, 64, 8, 1107 – 1110.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 19
PDF Downloads 52 52 11