Size does matter – Intraspecific variation of feeding mechanics in the crested newt Triturus dobrogicus (Kiritzescu, 1903)

Open access


Many studies have yet been conducted on suction feeding in aquatic salamander species. Within the Salamandridae, the crested newt Triturus dobrogicus (Kiritzescu, 1903), occurring from the Austrian Danube floodplains to the Danube Delta, was not subject of investigations so far. The present study examines the kinematics of aquatic suction feeding in this species by means of high-speed videography. Recordings of five individuals of different size and sex while feeding on bloodworms were conducted, in order to identify potential discrepancies among individuals and sizes. Five coordinate points were digitized from recordings of prey capture and twelve time- and velocity-determined variables were evaluated. All specimens follow a typical inertial suction feeding process, where rapid hyoid depression expands the buccal cavity. Generated negative pressure within the buccal cavity causes influx of water along with the prey item into the mouth. Results demonstrate higher distance values and angles for gape in individuals with smaller size. In addition, hyoid depression is maximized in smaller individuals. While Triturus dobrogicus resembles a typical inertial suction feeder in its functional morphology, intraspecific differences could be found regarding the correlation of different feeding patterns and body size.

[1]. Bramble, D. M., Media dependent feeding in turtles. Am. Zool. 1973, 13, 1342.

[2]. Bramble, D. M.; Wake, D. B., Feeding mechanisms of lower tetrapods. In: Functional vertebrate morphology, Eds., M. Hildebrand, D. M. Bramble, K. F. Liem, D. B. Wake, Univ.Chic.Press, Chicago, 1985, pp 230-261.

[3]. Gans, C., Copeia 1969 69, 855-857.

[4]. Lauder, G. V., Aquatic feeding in lower vertebrates. In: Functional vertebrate morphology, Eds., M. Hildebrand, D. M. Bramble, K. F. Liem, D. B. Wake, Univ.Chic.Press, Chicago, 1985, pp 210-229.

[5]. Haynes, W. M., CRC Handbook of Chemistry and Physics, 97th ed. Boca Raton, London, New York, CRC Press, Taylor & Francis Group, 2016.

[6]. Alexander, R. N., Functional design in fishes. Hutchinson Press, London, 1967.

[7]. Herrel, A.; Aerts, P., Biomechanical Studies of Food and Diet Selection. Nature Encyclopedia of Life Sciences. Nature Publishing Group, London, 2003, pp 1-8.

[8]. Deban, S. M., Constraint and convergence in the evolution of salamander feeding. In: Vertebrate Biomechanics and Evolution, Eds., J. P. Gasc, A. Casinos, V. L. Bels, BIOS Scientific Publishers, Oxford, 2003, pp 161-178.

[9]. Özeti, N.; Wake, D. B., The Morphology and Evolution of the Tongue and Associated Structures in Salamanders and Newts (Family Salamandridae). Copeia 1969, 1969, 91-123.

[10]. Deban, S. M.; O'Reilly, J. C.; Nishikawa, K.C., The Evolution of the Motor Control of Feeding in Amphibians. Amer. Zool. 2001 41, 1280-1298.

[11]. Lauder, G. V.; Shaffer, H. B., Design of feeding systems in aquatic vertebrates: major patterns and their evolutionary interpretations. In: The Skull 3, Eds., J. Hanken, B. K. Hall, Chicago: University of Chicago Press 1993, pp 113-149.

[12]. Gillis, G. B.; Lauder, G. V., Kinematics of feeding in bluegill sunfish: is there a general distinction between aquatic capture and transport behaviours? J. Exp. Biol. 1995 198, 709-720.

[13]. Pyron, R. A.; Wiens, J. J., A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phyl. Evol. 2011, 61, 543–583.

[14]. Arntzen, J. W.; Graham, P.; Wallis, G. P., Geographic variation and taxonomy of crested newts (Triturus cristatus superspecies): morphological and mitochondrial DNA data. Contrib. Zool. 1999, 68, 181-203.

[15]. Arntzen, J. W.; Themudo, G. E.; Wielstra, B., The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the centre of origin. Contrib. Zool. 2007, 76, 261-278.

[16]. Busack, S. D.; Jericho, B. G.; Maxson, L. R.; Uzzell, T., Evolutionary Relationships of Salamanders in the Genus Triturus: The View from Immunology. Herpetologica 1988, 44, 307-316.

[17]. Ivanovic, A.; Dzukic, G.; Kalezic, M., A Phenotypic Point of View of the Adaptive Radiation of Crested Newts (Triturus cristatus Superspecies, Caudata, Amphibia). Int. J. Evol. Biol. 2012, 2012, 1-9.

[18]. Arntzen, J. W.; Bugter, R. J. F.; Cogalniceanu, D.; Wallis, G. P., The distribution and conservation status of the Danube crested newt, Triturus dobrogicus. Amphibia-Reptilia 1997, 18, 133-142.

[19]. Ellinger, N.; Jehle, R., Strukturen und Dynamik einer Donaukammolch-Population (Triturus dobrogicus, KIRITZESCU 1903) am Endelteich bei Wien: Ein Überblick über neun Untersuchungsjahre. Stapfia 1997 51, 133-150.

[20]. Jehle, R.; Pauli-Thonke, A.; Tamnig, J.; Hödl, W., Phänologie und Wanderaktivität des Donaukammolches (Triturus dobrogicus) an einem Gewässer auf der Wiener Donauinsel. Stapfia 1997, 51, 119-132.

[21]. Bell, G., Populations of Crested Newts, Triturus cristatus, in Oxfordshire, England. Copeia 1979, 1979, 350-353.

[22]. Baker, J. M.; Halliday, T. R., Variation in dorsal crest morphology and tail height with age in Great Crested Newts (Triturus cristatus). Herpetol. J. 2000, 10, 173-176.

[23]. Shaffer, H. B.; Lauder, G. V., Patterns of variation in aquatic ambystomatid salamanders: kinematics of the feeding mechanism. Evolution 1985, 39, 83-92.

[24]. Heiss, E.; Natchev, N.; Gumpenberger, M.; Weissenbacher, A.; Van Wassenbergh, S., Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. J. Roy. Soc. Interface 2013, 10, 20121028.

[25]. Van Wassenberg, S.; Leysen, H.; Adriaens, D.; Aerts, P., J. Exp. Biol. 2013, 216, 407-417.

[26]. Hedrick, T. L., Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 2008, 3, 034001.

[27]. Deban, S. M.; Wake, D. B., Aquatic feeding in salamanders. In: Feeding: form, function and evolution in tetrapod vertebrates, Ed. K. Schwenk, San Diego, CA: Academic Press, 2000 pp 65–94.

[28]. Reilly, S. M.; Lauder, G. V., Morphology, behaviour and evolution: comparative kinematics of aquatic feeding in salamanders. Brain Behav. Evol. 1992, 40, 182-196.

[29]. Lauder, G. V.; Prendergast, T., Kinematics of aquatic prey capture in the snapping turtle Chelydra serpentina. J. Exp. Biol. 1992, 164, 55 – 78.

[30]. Lemell, P.; Lemell, C.; Snelderwaard, P.; Gumpenberger, M.; Wochesländer, R.; Weisgram J., Feeding patterns of Chelus fimbriatus (Pleurodira: Chelidae). J. Exper. Biol. 2002, 205, 1495-1506.

[31]. Lauder, G. V.; Shaffer, H. B., Design of the aquatic vertebrate skull: major patterns and their evolutionary interpretations. In: The vertebrate skull, Eds., J. Hanken, B. Hall, Univ.Chic.Press, Chicago, 1992, pp 113-159.

[32]. Heiss. E.; Aerts, P.; Van Wassenbergh, S., Flexibility is everything: prey capture throughout the seasonal habitat switches in the smooth newt Lissotriton vulgaris. Org. Divers. Evol. 2015, 15, 127-142.

[33]. Lauder, G. V., The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J. Exp. Biol. 1980, 88, 49-72.

[34]. Bemis, W. E., Feeding systems of living dipnoi: Anatomy and function. J. Morphol. 1986, 190, 249-275.

[35]. Bemis, W. E.; Lauder, G. V., Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). J. Morphol. 1986, 187, 81-108.

[36]. Reilly, S. M.; Lauder, G. V., The evolution of tetrapod feeding behaviour: kinematic homologies in prey transport. Evolution 1990, 44, 1542-1557.

[37]. Deban, S. M.; Marks, S. B., Metamorphosis and evolution of feeding behaviour in salamanders of the family Plethodontidae. Zool. J. Linn. Soc. 2002 134, 375-400.

[38]. Reilly, S. M., The ontogeny of aquatic feeding behaviour in Salamandra salamandra - stereotypy and isometry in feeding kinematics. J. Exp. Biol. 1995, 198, 701-708.

[39]. Lauder, G. V.; Shaffer, H. B., Ontogeny of Functional Design in Tiger Salamanders (Ambystoma tigrinum): Are Motor Patterns Conserved During Major Morphological Transformations? J. Morphol. 1988, 197, 249-268.

[40]. Wainwright, P. C.; Mehta, R. S.; Higham, T. E., Stereotypy, flexibility and coordination: key concepts in behavioural functional morphology. J. Exp. Biol. 2008, 211, 3523-3528.

[41]. Deban, S. M.; O'Reilly, J. C., The ontogeny of feeding kinematics in a giant salamander Cryptobranchus alleganiensis: Does current function or phylogenetic relatedness predict the scaling patterns of movement? Zoology 2005 108, 155-167.

[42]. Lauder, G. V., Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J. Morphol. 1980, 163, 283-317.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 342 17
PDF Downloads 113 112 15