Energy Grass as Raw Material for MDF Production

Open access


Medium density fiberboards are widely produced and used in Europe. The main raw materials used in Hungary are beech (Fagus sylvatica), hornbeam (Carpinus betulus), poplar (Populus spp.) and pine (Pinus spp.). Governmental subsidizing of biomass for power plants has created economic pressure and a shortage of wood prompting a major producer of energy grass to initialize a project to examine the possibility for the production of MDF from energy grass “Szarvasi-1” (Elymus elongatus (Agropyron elongatum) cv. Szarvasi-1). Prior to this, no research results on the experimental production of MDF from energy grass had been published. In our research study, energy grass was defibrated and MDF boards were produced with the use of different adhesives. Standard tests were completed to evaluate the suitability of this alternate raw material in MDF production. The best result was achieved with phenol formaldehyde (PF) adhesive.

Albert, S. – Padhiar, A. – Gandhi, D. (2011): Fiber Properties of Sorghum halepense and Its Suitability for Paper Production. Journal of Natural Fibers 8 (4): 263–271.

Alpár, T. (2007): Farostlemez-és forgácslapgyártás gyakorlatok [Practice in fiberboard and partilcleboard production], University of West Hungary, Sopron, 91 p. (in Hungarian)

Deppe, H-J. – Ernst, K. (1996): MDF – Mitteldichte Faserplatten [Medium density fiberboards], DRW Verlag, Leinfelden-Echterdingen. (in German)

Eastin, I. – Brose, I. – Novoselov, I. (2012): Wood-based panel markets, 2011-2012 UNECE/FAO Forest Products Annual Market Review, 2011–2012.

European Panel Federation (2006): European Panel Federation Annual Report 2005-2006, EPF, Brussels: 299.

European Panel Federation (2016): EPF Market report. (01.05.2017)

Halvarsson, S. – Norgren, M. – Edlund, H. (2004): Manufacturing of fiber composite medium density fiberboards (MDF) based on annual plant fiber and urea formaldehyde resin, Proceedings of International Conference on Environmentally-Compatible Forest Products. Oporto, Portugal: 131–137.

Heller, W. (1995): Die Spanplatten-Fibel [The particleboard story], Author’s edition, Hameln. 249–259 (in German)

Hurter, R.W. (2001): Nonwood plant fiber characteristics. Extracted from “Agricultural Residues”, TAPPI 1997 Nonwood Fibers Short Course Notes, updated and expanded August 2001.: 3–4.

Jankowszky, J. – Jankowszky Zs. (2004): Energy grass, ( (09.22.2016.)

Jankowszky, Zs. (2003): Fűfélék ipari célú hasznosítása [Industrial use of grass species], Acta agraria. 2003/10 (in Hungarian): 1–3.

Janowszky, Z. – Janowszky, J. – Lele, I. – Lele, M. – Nagy, H.J. – Rusznák, I. – Víg, A. (2012): New annual Hungarian plants (industrial grasses) as raw materials in the pulp and paper industry. Papíripar LVI (4): 3–7.

Kaur, H. – Dutt, D. – Tyagi, C. H. (2010): Optimization of soda pulping process of ligno-cellulosic residues of lemon and sofia grasses produced after steam distillation. BioResources 6 (1): 103–120.

Klie, Zs. (2005): MDF gyártása farostból és óriásfű felhasználásával [MDF production from wood fibers and giant grass], University of West Hungary, Sopron 32–35, 38 (in Hungarian)

Koch, P. (1972): Utilization of Hardwoods growing on southern Pine Sites, United States Department of Agriculture, Forest Service, Agriculture Handbook, No. 605.

Lele, I. (2004): Golden fields: utilization of Szarvasi-1 energy grass in paper industry, EU research project ‘Objective 1’ project report ( 09.22.2016.

Maloney, T. (1993): Modern Particleboard and Dry-Process Fiberboard Manufacturing, Miller Freeman Publishing Inc., San Francisco, CA.

Markessini, E. – Roffael E. – Rigal L. (1997): Panels from annual plant fibers bonded with ureaformaldehyde resins, 31st International Particleboard/Composite Materials Symposium, Pullmann, USA.: 151, 157

Pahkalaa, K. – Aaltob, M. – Isolahtic, M. – Poikolad, M. – Jauhiainen, L. (2008): Large-scale energy grass farming for power plants – A case study from Ostrobothnia, Finland. Biomass and bioenergy 32: 1009–1015.

Saligna, A. – Kizysik, M. – Muehl, J.H. – Youngquist, A.J. – Franco, F.S. (2001): Medium density fiberboard made from eucalyptus saligna, Forest Products Journal 51: 10.

Szántó, D. – Winkler, A. – Nagy J. (2003): Farostlemezek óriásfűből [Fiberboards (HB) from giant grass], Faipar 51 (3) 18–20 (in Hungarian)

Tofanica, B.M. – Cappelletto, E. – Gavrilescu, D. – Mueller, K. (2011): Properties of Rapeseed (Brassica napus) Stalks Fibers. Journal of Natural Fibers 8(4): 241–262.

Winkler, A. – Alpár, T. (2007): A hazai faanyagforrás jelentős bővítése, faültetvények létesítése és hasznosítása. 2.5. Új fafeldolgozási technológiák tudományos megalapozása üzemi kísérletekkel [Significant expansion of domestic wood sources, establishing and utilization of wood plantations. 2.5. Scientific background of new wood processing technologies in semi-industrial scale] Annual report for research project: NKFP4-0011/2005. Sopron (in Hungarian).

Winkler, A. (1999): Farostlemezek [Fiberboards], Dinasztia Kiadó, Budapest 46. (in Hungarian)

Xu, J. – Chen, Y. – Cheng, J.J. – Sharma-Shivappa, R.R. – Burns, J.C. (2011): Delignification of switchgrass cultivars for bioethanol production. BioResources 6 (1): 707–720.

Zhong, Z. – Sun, X.S. – Fang, X. – Ratto, Jo.A. (2002): Adhesive strength of guanidine hydrochloride – modified soy protein for fiberboard application, International Journal of Adhesion and Adhesives 22: 267.

Acta Silvatica et Lignaria Hungarica

The Journal of University of West Hungary

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.136
Source Normalized Impact per Paper (SNIP) 2017: 0.159


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 158 158 24
PDF Downloads 43 43 12