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K - COMPLEX DETECTION USING THE CONTINUOUS WAVELET 
TRANSFORM

ABSTRACT

The wide variety of waveform in EEG signals and the high non-stationary nature of many of them is one 
of the main difficulties to develop automatic detection system for them. In sleep stage classification a relevant 
transient wave is the K-complex. This paper comprehend the developing of two algorithms in order to achieve 
an automatic K-complex detection from EEG raw data. These algorithms are based on a time-frequency 
analysis and two time-frequency techniques, the Short Time Fourier Transform (STFT) and the Continuous 
Wavelet Transform (CWT), are tested in order to find out which one is the best for our purpose, being of two 
wavelet functions to measure the capability of them to detect K-complex and to choose one to be employed 
in the algorithms. The first algorithm is based on the energy distribution of the CWT detecting the spectral 
component of the K-complex. The second algorithm is focused on the morphology of the K-complex / sleep 
spindle waveform after the CWT. Evaluating the algorithms results reveals that a false K-complex detection 
is as important as real K-complex detection.

Keywords: EEG, K-complex, Short Time Fourier Transform, Continous Wavelet Transform, wave 
morphology

Introduction

Since the discovery of the 
Electroencephalogram (EEG) by the German 
psychiatrist Hans Berger in 1924 extensive 
studies about electrical activity of the human 
brain have been carried out. One of these 
studies correspond to sleep stage classification. 
In the last twenty years several researches and 
significance advances have been made in the field 
of automatic sleep stage classification since it is 
one of the diagnostic tools needed for assessment 
of a number of sleep disorders. Automatic sleep 
analysis is based on the detection of various 
waveforms in the EEG and other bioelectric 
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signals, and inferring different sleep stages from 
the detection of these waveforms. However, 
the strong non-stationarity nature (transient 
phenomena) of EEG signals has represented 
one of  the main difficulties in the developing of 
reliable systems for sleep classification.

A non-stationary signal is defined as a 
short time event whose frequency content vary 
in time. A traditional analysis technique, for this 
kind of signals, that provide an image of the 
frequency contents of a signal as a function of 
the time is the time-frequency analysis. Several 
methods or time-frequency distributions can be 
used, for example the spectrogram (Short Time 
Fourier Transform) which calculate the power 
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spectrum of the investigated signal seen through 
a time windows function that slide along the time 
axis. In this work we will concentrated in another 
time-frequency distribution, the Continuous 
Wavelet Transform (CWT). The CWT can 
be seen as an operator that takes a signal and 
produces a function depending of two variables: 
time and scale. In this way the CWT is able to 
provide information of features corresponding to 
the signal that are dependent on the scale used. 
The scale-dependent structure is strongly linked 
with the frequency content of the signal giving 
to the CWT a great potential for detecting and 
identifying signals with exotic spectral features 
like transients behavior. 

Detection of transient signals in 
Electroencephalograms has been a subject of 
research for several years. In sleep EEG one of the 
most relevant transient signals is the K-complex. 
In literature we have found a sort of methods 
and algorithms for detection of K-complexes 
using Neural Networks, feature based approach, 
independent component analysis, adaptive filters, 
statistics methods among others. In order to 
introduce the reader in the K-complex detection 
field, we will give a brief explanation about some 
studies which have been carried out in this field.

In this report we will try to probe whether 
or no using wavelet transform we can improve 
detection of K-complexes. At the beginning 
of the last century the Haar transform gave 
the first step in the wavelet career, but this 
transform was not very used until early eighties, 
when geophysicians, theorical physicians and 
mathematicians developed a solid theory for 
Wavelet. Since then, Wavelet has been used in 
several applications, like signal processing, 
data compress, time-frequency analysis, 
multirresolution analysis, statistics, vibrations 
and many others.

In the last fifteen years wavelet has 
been widely used in EEG analysis as much as 
epilepsy and Alzheimer diagnosis as sleep stage 
classification.

The main of this work is to extract 
information from sleep EEG raw data about 
the presence of K-complexes. We decided to 
work in the time-frequency domain instead 
of either pure time domain or pure frequency 
domain as previous works in this field. In order 

to implement a time-frequency analysis the 
Continuous Wavelet Transform will be employed 
because it has been probe to be an efficient tool 
in extraction of transient characteristics from a 
collection of raw data. Therefore, the problem 
statement of this work is to build and evaluate 
a K-complex detection system using the wavelet 
transform and, posteriorly, evaluate the algorithm 
performance trying to find out possible important 
faults that may affect the system.

Relevant Theory

This chapter will try to cover all the 
necessary theoretical background in order to 
give the reader a better approach to the sleep 
stage classification and time-frequency analysis 
using wavelet transform. It begins with the 
basic concepts of sleep classification and a brief 
description of the bioelectrical signal involved, 
particularly the electroencephalogram (EEG). 
Then, an explanation of the relevant EEG 
waveforms is given. As a first step toward a 
process of EEG transient signal detection, the 
Joint Time – Frequency Analysis are explained. 
Finally, a review of the definition and basic 
proprieties of the Continuous Wavelet Transform, 
with the corresponding example and reason 
of why this Transform will be used for time-
frequency analysis are given.

1.1 Sleep Analysis
Sleep analysis is a medical tool of vital 

importance for the diagnosis and treatment of 
several kinds of sleep disturbance and psychiatric 
or neurological disorders. Today, a typical study 
of sleep includes records of the muscle tone 
(EMG), of the eye movements (EOG) and of the 
cerebral activity (EEG) although depending on the 
clinical purpose other physiological parameters 
like respiration, heart rate, blood pressure, body 
temperature, hormonal secretions are used. On 
the basis of such recordings a certain number 
of sleep stage are distinguished by criteria that 
have been standardized by general by general 
agreement (1). 

1.2 Electroencephalogram (EEG)
The physiological exploration of sleep 

involves the study of several signals, such as 
electroencephalogram (EEG), electro-ocular 
(EOG), electromyogram (EMG), blood oxygen 
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measurement, temperature and electrocardiogram 
(ECG). The recording of these signals is called a 
polysomnogram.

An electroencephalogram represents the 
activity of bioelectric signals that is determined by 
the electrical activity of the brain. The oscillations 
of the brain are called brainwaves. They have 
certain characteristics including: amplitude 
ranging between 10-500 μV and frequency 
between 0.5-40 Hz. For the measurement of brain 
waves one uses the international standardized 
system called “International Federation 10-20 
system”.

The result of a polysomnogram is visualized 
by using a hypnogram which distinguishes sleep 
stages by analyzing successive sequences of 30 
seconds of sleep.

These stages are defined by the nature of 
the signals encountered in the EEG, including 
the delta, theta, alpha or beta waves, which are 
identified by their frequency domains.

The main wave types are: 
Alpha Research has shown that in a person 

who is awake, the presence of alpha waves 
indicates her/his relaxation. Alpha waves range 
from 8 to 12 Hz, have a nearly sinusoidal shape 
and an amplitude between 20 and 40 μV.

Beta: When a person responds to external 
stimulation, alpha waves are replaced by beta 
waves. They range from 14 to 25 Hz and have an 
amplitude ranging between 5 and 20 μV.

Theta waves are in the range of 4-8 Hz, 
with an amplitude of 20-35 μV and they normally 
occur during sleep but are associated with 
dream states, creativity and extensive learning 
possibilities.

Delta: The delta waves range from 0.5 
to 4 Hz, have an amplitude greater than 75 μV 
and occur during deep sleep. According to this 
classification, the four stages of sleep, represented 
in Figure 1, are defined as follows:

●Stage 1: corresponds to moments of 
decline in the waking state, transition from a 
relaxed state of wakefulness to sleepiness. Beta 
waves increase in amplitude (subvigil beta), the 
percentage of alpha in the posterior (parietal-
occipital) lobe falls below 50%, have small 
amplitude and last about 1-7 minutes, being 
gradually replaced by theta (theta rhythm).

	 ●Stage 2: indicates light sleep. There 

emerge theta and secondary transient sleeping 
spindles with 14 Hz frequency, 40 to 50 μV 
amplitude and no more than one K complex 
with the frequency of 33 Hz, amplitude of 100 
μV.  In a healthy person they must be present 
simultaneously in both the left and right 
hemispheres. Furthermore, the wave magnitude 
increases significantly in the central brain areas.

●Stage 3: indicates slow (stable) sleep, 
high amplitude slow waves called delta waves 
(delta rhythm - 75μV), appear on 20-50% of 
samples, theta waves become irregular. At this 
stage, transient waves such as sleep spindles and 
complex K still persist

	 ●Stage 4: indicates the rapid (paradoxical) 
sleep state, delta wave increases occur in more 
than 50% of samples (delta-75μV), theta waves 
appear regularly, and the secondary waves 
disappear. Paradoxical sleep or REM (Rapid Eye 
Movement) gives the impression of a superficial 
sleep, although the depth of sleep is deeper than 
in the other stages of sleep (muscle relaxation and 
rapid eye movements. It is a sleeping phase with 
dreams, with secretions of growth hormones, 
having a prevailing role in the restoration 
function.

Conventionally, the “slow sleep” or 
NREM (Non Rapid Eye Movement) stage groups 
up stages 1, 2 and 3, while “fast-paradoxical 
sleep” or the REM (Rapid Eye Movement) stage 
is found in stage 4.

	 If this classification provides the essential 
information for identifying certain sleep 
abnormalities, it leads however to an incomplete 
classification. Indeed, this classification does 
not explicitly take into account, for example, 
the frequency of the occurrences of transient 
phenomena that are important in pinpointing 
certain pathologies (figure 2).

                                        
Figure 1: Stage of sleep during the course of the night, for young and 

elderly subjects.    
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Figure 2: EEG waveforms in various stages of sleep 

The K Complex, along with sleep cycles, 
is one of the main “markers” of the onset of 
sleep as it appears in stage 2. It is defined by a 
wave with both polarities, having a minimum 
amplitude of 100 μVvv, a duration between 
0.5 - 1 seconds, preceded and followed by low 
amplitude activity of no more than 50 μVvv for 
a duration of at least 2 seconds.  Complex K may 
occur both spontaneously (unevoked) and under 
the influence of external stimuli. Complex K 
features a frequency support between 0.5-1.5 Hz 
for the first peak and 5-10 Hz for the second peak 
and distinguishes itself by the high amplitude 
(65μV) of the wave shape of the background 
electroencephalogram of stage 2 (2,3). The 
importance of detecting complex K is due to the 
significance it hast for prognosis and diagnosis

1.3 Joint Time-Frequency Analysis
The Cohen -class time-frequency 

representation
The class of time-frequency representations, 

in the most general form, starting from the 
Wigner-Ville distribution relationship, was 
described by Cohen:
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where Φ is an arbitrary function called 

kernel function. According to the mode of 

choosing this function, several particular cases 
corresponding to certain distributions (t, ω) 
are obtained (4). The most representative time-
frequency distributions in the Cohen class are 
shown in Table 1.

Table 1. Cohen-class frequency-time representations and 
associated core functions. 
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Continuous Wavelet Transform (CWT)

The continuous wavelet transform is used 
to decompose a signal into wavelets. Wavelets 
are small oscillations that are highly localized in 
time. The CWT is an excellent tool for mapping 
the changing properties of non-stationary signals. 
The definitions for the CWT are as follows:
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The discrete synthesis operation can be 
presented as follows:
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where, 

 8 

 
 
where, )(,),( ,, tfba bakl ψ=Ψ  [Oppenheim and Shafer, 1989]. 

2. Methods and Implementation 
2.1 Wavelet Selection 
In order to choose the wavelet that will be employed in the K-complex detection algorithm, criteria based on how 

the wavelet spreads the signal energy in time was developed. Thus, the chosen criteria were based on two main points: 
1. The K-complex frequency has values from 0.5 Hz to 3.5 Hz. 
2. K-complex wave has to have a notorious amplitude difference between the K-complex energy and the energy 

registered and second before the K-complex and one second after it. This criterion tries to make the distinction 
between a K-complex and the burst of delta activity. 

Based on these criteria, the best wavelet for the detection algorithm will be that which give the biggest difference 
the energy of the K-complex and the energy calculated and second before and after the K-complex. The first criterion, 
about the frequency range, was settled using the LabView  Based on literature [Mallat, 1998], [Kaiser, 1994], [Polikar, 
1996] the most used wavelets for time-frequency analysis have been Mexican Hat and Morlet wavelet. Consequently, 
these two wavelet were chosen for further analysis. The Mexican hat function is the second derivative of the Gaussian 
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Methods and Implementation

2.1 Wavelet Selection
In order to choose the wavelet that will be 

employed in the K-complex detection algorithm, 
criteria based on how the wavelet spreads the 
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signal energy in time was developed. Thus, the 
chosen criteria were based on two main points:

The K-complex frequency has values from 
0.5 Hz to 3.5 Hz.

K-complex wave has to have a notorious 
amplitude difference between the K-complex 
energy and the energy registered and second 
before the K-complex and one second after it. This 
criterion tries to make the distinction between a 
K-complex and the burst of delta activity.

Based on these criteria, the best wavelet for 
the detection algorithm will be that which give the 
biggest difference the energy of the K-complex 
and the energy calculated and second before and 
after the K-complex. The first criterion, about the 
frequency range, was settled using the LabView  
Based on literature(6,7,8) the most used wavelets 
for time-frequency analysis have been Mexican 
Hat and Morlet wavelet. Consequently, these two 
wavelet were chosen for further analysis. The 
Mexican hat function is the second derivative of 

the Gaussian function 2

2t

e
−

 and is:    
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The Morlet function is a complex wavelet. The wavelet transform of a real signal with this complex wavelet is 
plotted in modulus-phase form, however, in this work just the real part will be used. Morlet wavelet is: 
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The Morlet function is a complex wavelet. 
The wavelet transform of a real signal with this 
complex wavelet is plotted in modulus-phase 
form, however, in this work just the real part will 
be used. Morlet wavelet is:
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Table 1. Scale range and its corresponding pseudo-
frequency range for both Mexican hat and Morket 

wavelet.

Wavelets Scale a Pseudo-frequency [Hz]
Mexican Hat 14-100 3.57 - 0.5

Morlet 43-325 3.53 - 0.5

After determine which wavelet use, the 

next step was to settle the location in time of 
the K-complex within its respective 10 seconds 
epoch signal and its respective time duration T. 
The K-complex interval T is the value which 
must be equal or greater that 0.5 seconds and 
equal or lower than 1.5 seconds (figure 3). 

Posteriorly, the CWT was computed 
and from the absolute values of the obtained 
coefficients matrix, the highest value in amplitude 
and its respective frequency value were looked 
assuming that this frequency is the corresponding 
spectral component of the K-complex. The 
wavelet coefficients corresponding only to 
this spectral component will be called “line 
of frequency”. Consequently, using the signal 
extracted from this “line of frequency”, as it is 
depicted in the right illustration on figure 4.

                                              

Figure 3. K-complex time period T.

                                          

Figure 4. Continuous wavelet transform (absolute value) 
of the K-complex shown where the maximum amplitude 

correspond to the pseudo frequency content of the 
K-complex.
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2.2 Algorithm Design
As K-complex are transient phenomena 

from EEG an algorithm will be developed 
in order to achieve an automatic detection of 
these transient signals. The algorithm will be 
based on time-frequency analysis searching the 
manner of how quantifies the energy distribution 
of K-complex in the time-frequency plane. To 
develop this algorithm the CWT will be employed 
because this tool has demonstrated a good 
performance in transient detection and feature 
extraction in several previous works (9,10). 
Employing some of the same parameters used in 
the wavelet selection process, the design of this 
K-complex detection algorithm will be based 
on the Energy Distribution of the K-complex in 
the time-frequency plane using the CWT. The 
wavelet employed in this algorithm will be the 
Mexican Hat wavelet function. 

As in the wavelet selection procedure, the 
frequency criterion was based on theory assuming 
that a K-complex has a frequency range between 
0.5 and 3.5 Hz. The pseudo-frequency range 
obtained was splitted into 17 pseudo-frequency 
values which were used to calculate the CWT. 
The scale and pseudo-frequency range are in 
table 2. The number selected to split the pseudo-
frequency range was established basically in order 
to obtain an acceptable resolution in the time-
frequency representation, without compromises 
the time performance of the algorithm.

Table 2. Scale to frequency transformation using the 
Mexican Hat wavelet.

Scale Pseudo-frequency [HZ]
14.00 3.57
19.38 2.58
24.75 2.02
30.12 1.66
35.50 1.41
40.88 1.22
46.25 1.08
51.62 0.97
57.00 0.88
62.38 0.80
67.75 0.74
73.12 0.68
78.50 0.64
83.88 0.60
89.25 0.56
74.62 0.53
100 0.50

The energy distribution criteria were 
carried out taking a 10 seconds epoch signal 
with a single clear K-complex and computing the 
energy value the frequency line belonging to the 
highest value found in the CWT matrix of that 
signal. As we defined in the wavelet selection 
criteria, the pseudo-frequency line corresponding 
to the highest absolute value in the CWT matrix, 
will be the K-complex spectral component. This 
was probed by comparing the Fourier transform 
of the original signal with the Fourier transform 
of the frequency line corresponding to the 
maximum value found in the CWT matrix. As is 
illustrated in figure 5 we can see that the CWT 
pseudo-frequency line obtained, the energy per 
on second was computed having a result of ten 
energy value per epoch. To calculate the energy 
per one second E, intervals of 200 samples were 
taken (because the original signal is sampled 
at 200 Hz, 1 second contain 200 samples) 
computing the energy as:

 17 
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Using the K-complex database an attempt 
to find a common behavior of the energy in the 
presence of a K-complex was tried. 

                  

Figure 5. Left – top: K-complex in a ten seconds epoch from EEG; Right 
– top: CWT for scale 57.00 that correspond to the pseudo-frequency of 
0.88 Hz, it can be seen how the wavelet try to assimilate the shape of 
the K-complex. From this signal the energy value was computed; Left 
– bottom: Fourier transform of the K-complex, the highest, amplitude 
correspond to 0.88 Hz; Right – bottom Fourier transform of the CWT 

pseudo-frequency line.
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Figure 6. Energy distribution

Results and Discussion

After finish the experimental test, the 
algorithm performance was tested using the 
entire eight hours EEG signal (channel 4 signal 
corresponding to the record position Fp2-M1). 
Before start the test, a new visual selection of 
K-complex was made. In this classification we 
scored 235 K-complex along the entire night. 
Before run the algorithm through the entire night 
EEG signal, the obtained results were not as 
satisfactory as we expect. A total number of 955 
event were detected as k-complex. From the 235 
previously identified K-complexes, a number 
of 179 K-complex were detected and 56 were 
not detected. Therefore, based on this results 
a total number of 776 false K-complexes were 
classified as K-complexes by the algorithm. The 
summarized results can be seen in Table 3 and in 
Figure 7 and 8.

Table 3. Results of the algorithm performan

Total of detected events 955

Real K-complexes detected 179

Real K-complexes not detected 56

False K-complexes scored 776

Figure 7. Pie chart plot that shows the percentage 
distribution of table 3 (discrimination between 

K-complexes and other transient signal).               

Figure 8. Pie chart plot that describe the percentage 
distribution achieved in the detection of real K-complexes 

only.

The algorithm performance has a good 
capacity to exclude false K-complexes, but 
the main idea of obtaining a good K-complex 
detection algorithm, and at the same time, trying 
to minimize the number of criteria used for the 
detection was to much restrictive in the criteria 
number.

Conclusion

In this report we tried to cover the necessary 
theoretical and practical topics in order to develop 
different algorithms based on the Continuous 
Wavelet Transform for K-complex detection on 
EEG signals. A description of the sleep stage 
classification, Fourier Transform, Short Time 
Fourier Transform and Continuous Wavelet 
Transform was given. The STFT and the CWT 
are two different tools with the same aim: time-
frequency analysis. Are their performance are 
also different. Therefore, when time-frequency 
analysis is required, we should be very careful 
about the features of the signal to analyze, 
since for some signals the STFT could be more 
appropriate than the CWT and also in the other 
direction. For example in signals with no transient 
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content and a limited band width, the STFT has 
a good performance and the computation time 
is not large, but when there are transient signals 
involved, the CWT becomes necessary, and 
the computation time increase. Two wavelets 
function were tested with the purpose to obtain 
a quantitative description about how these two 
different wavelets, Mexican hat and Morlet, are 
capable to achieve a good K-complex detection 
taken in account the morphology, frequency 
content, time duration and power spectrum of the 
K-complex. From this test, the most important 
conclusion we could extract was that the wavelet 
capability in the detection of K-complex has a 
strong dependence on the wavelet waveform. 
Since the waveform of the wavelet has probed to 
be an importance parameter for transient signal 
detection we would like to left this field open for 
further analysis based on other different wavelet 
depending on the application they will be used. 
The way to use the CWT was a precise bandpass 
filter – we could obtain a very narrow frequency 
band or only one pseudo-frequency line without 
big distortion in the signal shape. 

We achieved a very good separation of 
frequencies in a range 0.5 – 3.5 Hz (17 frequency 
lines) and very good signal suppression in the 
exterior from this frequency range. This feature 
of CWT was implemented in both algorithms 
to detect K-complex signals and was achieved 
a good results to detect them. To know the real 
capacity of the algorithms to detect K-complex, 
they were tested using a single channel from eight 
hours EEG signal. From the indices specificity, 
sensitivity and validity we obtained very different 
results. The performance of the algorithm based 
on the energy distribution was relatively poor 
to make a good discrimination between real 
K-complexes and false K-complexes. The lack 
of enough criteria for K-complex detection could 
be the answer of this poor performance. During 
our experience we realized that the decision 
regarding the detection of a K-complex may need 
to be corroboration by a single consideration that 
we did not take in account. This consideration 
is concerning to the vicinity of sleep spindles 
and K-complexes. Another interesting point 
to mention was the fact that detection of 
K-complexes was based on the research of only 
real K-complexes since from the results obtained 

we realized that a more difficult task to carry out 
would be the develop of accurate criteria in order 
to achieve a better recognition between Delta 
activity and K-complex. When looking in the 
false K-complexes detected as K-complexes we 
realized that is possible to find real K-complexes 
in this set of signals. Almost all these signals are 
out of stage two, and some of them just in the edge 
of a particular stage two. This makes to use think 
that we found real K-complexes in these signals, 
and a deeper investigation should be made on 
this field. One possible reason for this problem 
is that we only looked for K-complexes in stage 
2, since we did not find one single reference 
about the existence of K-complexes out of stage 
2. Another reason is a possible not proper stage 
classification. Even when all signals in question 
were real K-complexes, the performance of the 
algorithm will not be good enough, therefore, 
a criterion for make the difference between 
K-complexes and Delta waves is highly necessary 
in order to improve the validity of the algorithms.

Acknowledgements

All authors contributed equally to this 
paper.

References

1.	 Rechtschaffen, A. and Kales, A. A Manual of 
Standardized Terminology, Techniques, and 
Scoring System for Sleep Stages of Human 
Subjects. Washington Public Health Service, 
US Government Printing Office, Washington 
DC, 1968.

2.	 Bankman IN, Sigillito VG, Wise RA, Smith 
PL. Feature-based detection of the K-complex 
wave in the human electroencephalogram 
using neural networks. IEEE transactions 
on biomedical engineering. 1992 
Dec;39(12):1305-10.

3.	 Henry D, Sauter D, Caspary O. Comparison of 
detection methods: application to K-complex 
detection in sleep EEG. InEngineering 
in Medicine and Biology Society, 1994. 
Engineering Advances: New Opportunities 
for Biomedical Engineers. Proceedings of 
the 16th Annual International Conference 
of the IEEE 1994 (Vol. 2, pp. 1218-1219). 



152

IEEE..
4.	 Qian S, Chen D. Joint time-frequency 

analysis: methods and applications: Prentice-
Hall, Inc.; 1996.

5.	 Oppenheim AV, Schafer RW. Discrete-time 
signal processing: Prentice-Hall, Inc.; 1989. 

6.	 Kaiser G. A friendly guide to wavelets: 
Birkhauser Boston Inc.; 1994. .

7.	 Mallat, S. A Wavelet Tour of Signal 
Processing. Academic Press.; 1998.

8.	 Polikar R. The wavelet tutorial [Internet].1996 
Available from: http//engineering.rowan.
edu/%7polikar/wavelets/wtutorial.html

9.	 Bailey TC, Sapatinas T, Powell KJ, 
Krzanowski WJ. Signal detection in 
underwater sound using wavelets. Journal of 
the American Statistical Association. 1998 
Mar 1;93(441):73-83.

10.	 Schiff SJ, Aldroubi A, Unser M, Sato 
S. Fast wavelet transformation of EEG. 
Electroencephalography and clinical 
neurophysiology. 1994 Dec 1;91(6):442-55.




