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ANALYSIS AND DETECTION OF EEG TRANSIENT WAVES DURING SLEEP

Ionescu Ana-Maria1, Dumitrescu Cătălin2, Copaci Carmen3, Iliescu Dan1, Hangan Tony1, Bobe Alexandru4

ABSTRACT

Electroencephalogram (EEG) analysis consists of locating signal structtures in time and frequency. A 
detection method based on the Matching Pursuit Algorithms finds the suboptimal solution of the function 
optimal linear expansion over a redundant waveform dictionary. This paper has put forth a method for the 
automatic detection and analysis of transient waves during sleep based on the matching pursuit method 
with a real dictionary og Gabor functions. Each wave peak is described in terms of natural parameters. In 
this context, there have been confirmed several literature hypotheses regarding the spatial, temporal, and 
frequency distribution of transient waves during sleep, and their relationships with slow wave brain activity. 
Mastery and expertise in clinical EEG interpretation is one of the most desirable disgnostic clinical skills in 
interpreting seizures, epilepsy, sleep disorder, biomarkers for early disgnosis of Parkinson’s and Alzheimer’s 
disease, and other neurocognitive studies.

Keywords: matching pursuit, discrete Gabor functions, EEG analysis, non-stationary signals, 
multicomponent signals

Introduction 

The first success in automatic EEG 
analysis was the introduction of the Fast Fourier 
Transform in 1965 which is a development of the 
Fourier Transform (FT). The Fourier transform 
fulfills the prediction criterion and performs a 
category of information - the spectral distribution 
of the signal energy. Nevertheless, FT can lead 
to statistical errors and is severely influenced by 
the assumption that the signal is either infinite or 
periodically outside the measurement window. 
However, until now, FFT has remained the main 
method of signal processing used for biomedical 
signal analysis. Parametric methods, such as the 
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autoregressive model, do not have the “window” 
effect and yield estimates with better statistical 
properties because they no longer assume the 
signal to be outside the measurement window. 
However, as in the case of FT, the signal must 
be stationary. Spectral methods, such as the 
Fourier transform and autoregressive models, 
have some natural limitations. They provide 
global features of the entire segment under 
analysis while the signal structures that last 
shorter than the measurement window cannot 
be identified. According to state-of-the-art 
expertise, the information processed by the brain 
is encoded by the dynamic changes of electrical 
activity in time, frequency and space. A complete 
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description of these phenomena would require a 
very good time-frequency resolution that cannot 
be obtained with the FFT or autoregressive 
model. Indeed, there are plenty of cases where 
the global characteristics of the entire analyzed 
segment are needed. Furthermore, in some cases, 
time-frequency analyses cannot provide the 
type of information given by the multi-channel 
autoregressive model, e.g., the direction of 
information flow between electrodes. Since none 
of the approximations presented satisfies all the 
requirements, we shall introduce a new method 
in the processing of biomedical signals - the 
Gabor adaptive representation for real functions.

This project addresses the problem of 
detecting sleep spindles and K-complexes in 
human sleep EEG as a biological marker for 
memory consolidation. Sleep spindles and 
K-complexes aid in classifying stage 2 NREM 
human sleep. Both of them play a critical role 
in system consolidation of long term declarative 
and procedural memories, having a significant 
impact on human performance. 

Neurological and psychiatric conditions 
like Alzheimer’s disease (AD) and schizophrenia 
are associated with decreased memory 
performance and reduced spindle activity during 
sleep. Similarly, a decline in learning capabilities 
in the elderly correlates with diminished sleep 
spindle activity in prefrontal cortical areas. These 
examples complement the studies in healthy 
subjects by demonstrating a relationship between 
spindles and memory also under conditions of 
decreased performance.

The Matching Pursuit adaptive representation 

The natural limitations of the classical 
transform with damped waves in biomedical 
signal processing are due to the relatively 
small set of waveforms used to express signal 
dispersion. It may be said that the dictionary 
used in wavelet transformation is limited. In the 
case of the orthogonal transform with package 
damped wavelets, one must work with the 
smallest possible dictionary - on an orthonormal 
basis.

A natural language is redundant: many 

words are very close in meaning. Because of 
this factor, we can express very subtle and 
complicated ideas in relatively few words. On 
the other hand, let us suppose that the same ideas 
(feelings, thoughts) are described by a person 
using a limited dictionary. Not only will the 
expressions increase in size, but it will lose much 
of significance and, of course, elegance. 

Dictionaries with low redundancy (or 
without, as in the case of a base) are convenient 
for both calculations and interpretation. However, 
if the main purpose is to adapt the representation, 
the “dictionary” of the basic functions should be 
increased. A large and redundant basic waveform 
dictionary can be generated, for example, by 
scaling, translation and, unlike the wavelet 
transform, by the modulation of a single window 
function g(t):
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where s > 0 – is the scale este scala,
 x - modulation frequency,
 u – translation.
Index I = (s, x, u) describes the set of 

parameters. The window function g(t) is usually 
even and its energy is mostly concentrated 
around u within a time frame proportional 
to s. In the frequency domain the energy is 
mostly concentrated around x with a scattering 
proportional to 1/s. The minimum time-frequency 
dispersion is obtained if g(t) is Gaussian.

The dictionaries of the windowed Fourier 
transform and of the damped waves transform 
may be obtained as subsets of this dictionary 
defined by some restrictions in the choice of 
parameters. In the case of the Fourier transform 
window, scale s is constant - equal to the window 
wavelength - and parameters u and x are uniformly 
sampled. In the case of the wavelet transform, the 
frequency modulation is limited by the frequency 
parameter restriction x = x0/s, x0 = const.

One is left to choose from such a dictionary 
waveform that best fit the signal structures, that 
is, to best express the signal dispersion

An optimal approximation e  may be defined 
as an extension that minimizes the approximation 
error e of signal f by M waveforms:
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   ε - |f - ∑ (f, gI) gI| - min      (2) 
 

Finding such an optimal approximation ε is a Nondeterministic Polynomial [1]. This may 
be proved by demonstrating that the "exact coverage by the problem with 3 sets" [2] can be 
transformed into a polynomial of time in an optimal approximation problem ε. Thus, an 
algorithm that solves the approximation problem ε can solve the "exact 3-set problem coverage" 
which is known to be complete for the nondetermined polynomial [3]. 

It may be said that the optimal representation - or all the information needed to compute it 
- is gathered in a sequence of numbers that constitute a dynamic series for which we lack any 
efficient way of solving. 

Another problem arises from the fact that such an optimal extension would be unstable 
relative to the number of M waveforms used, since the modification of M, even by only one, 
may lead to the complete modification of the set of waveforms chosen for representation. 

These problems force us to choose sub-optimal solutions. A suboptimal extension of a 
function over such a redundant dictionary may be found by using the matching pursuit 
algorithm. 

In the first step of the iterative procedure a gI vector is chosen which gives the largest 
product with the signal f(t): 

 
                    

  

               [2]
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Finding such an optimal approximation 
e is a Nondeterministic Polynomial (1). This 
may be proved by demonstrating that the “exact 
coverage by the problem with 3 sets” (2) can 
be transformed into a polynomial of time in 
an optimal approximation problem e. Thus, 
an algorithm that solves the approximation 
problem e can solve the “exact 3-set problem 
coverage” which is known to be complete for the 
nondetermined polynomial (3).

It may be said that the optimal representation 
- or all the information needed to compute it - is 
gathered in a sequence of numbers that constitute 
a dynamic series for which we lack any efficient 
way of solving.

Another problem arises from the fact that 
such an optimal extension would be unstable 
relative to the number of M waveforms used, 
since the modification of M, even by only one, 
may lead to the complete modification of the set 
of waveforms chosen for representation.

These problems force us to choose sub-
optimal solutions. A suboptimal extension of a 
function over such a redundant dictionary may be 
found by using the matching pursuit algorithm.

In the first step of the iterative procedure 
a gI vector is chosen which gives the largest 
product with the signal f(t):
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          f -  <f, gI > gI - R┴f                       (3) 
 
       Then the remaining vector R1 obtained after approximating function f in direction g is 
similarly decomposed. The iterative procedure is repeated until one obtains as results: 

  
  

   [3]

Then the remaining vector R1 obtained 
after approximating function f in direction g is 
similarly decomposed. The iterative procedure is 
repeated until one obtains as results:
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Rnf = < Rnf, gI > gI - Rn-1f      (4) 

 
       In this way signal f is decomposed into a sum of time-frequency atoms chosen to optimally 
adjust the signal residues: 
  

  [4]

In this way signal f is decomposed into a 
sum of time-frequency atoms chosen to optimally 
adjust the signal residues:
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f - ∑
=

m

n 0

< Rnf, gI > gI   Rn┴f     (5) 

 
       It has been demonstrated [1] that the procedure converges to f(t), i.e.: 
  

   [5]
 
       It has been demonstrated (1) that the 

procedure converges to f(t), i.e.:
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lim | Rmf | = 0      (6) 
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Hence :
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       Hence : 

f(t) = ∑
=

m

n 0
< Rnf, gI > gI       (7) 

 
and 
  

              [7]

and
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You can view the decomposition results using the matching pursuit algorithm in the time-

frequency plane by adding the Wigner distribution [4] to each of the selected atoms. The 
Wigner distribution of function f(t) is defined as: 

 
  

              [8]

You can view the decomposition results 
using the matching pursuit algorithm in the 
time-frequency plane by adding the Wigner 
distribution (4) to each of the selected atoms. The 
Wigner distribution of function f(t) is defined as:Catalin Dumitrescu 12 
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       The calculation of the Wigner distribution throughout the whole decomposition as defined 
in equation (7) would yield: 

 
  

            [9]

 The calculation of the Wigner distribution 
throughout the whole decomposition as defined 
in equation [7] would yield:
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where the transversal Wigner distribution W[f,h](t,w0) of functions f and h is defined by:  

 
  

   [10]

where the transversal Wigner distribution 
W[f,h](t,w0) of functions f and h is defined by: Catalin Dumitrescu 14 

W[f, h](t, ω) = ∫
∞

∞−
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The double sum of equation (10), which contains the Wigner cross-sectional distribution 

of the different atoms in extension (7) corresponds to the transversal terms generally present in 
the Wigner distribution. These terms need to be removed in order to get a clear picture of the 
energy distribution in the time-frequency representation. The removal of these terms from 
equation (10) is direct - we only keep the first sum. Consequently, for the visualization of the 
energy density in the time-frequency plane of the representation of the signal obtained by the 
matching pursuit filter one defines an Ef(t,w) variable as:  

 
  

          [11]

The double sum of equation [10], which 
contains the Wigner cross-sectional distribution 
of the different atoms in extension [7] 
corresponds to the transversal terms generally 
present in the Wigner distribution. These terms 
need to be removed in order to get a clear picture 
of the energy distribution in the time-frequency 
representation. The removal of these terms from 
equation [10] is direct - we only keep the first 
sum. Consequently, for the visualization of the 
energy density in the time-frequency plane of 
the representation of the signal obtained by the 
matching pursuit filter one defines an Ef(t,w) 
variable as: 
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Ef(t, ω) = ∑
=

m

n 0
|< Rnf , gI > gI  | 2  WgI (t, ω)                  (12) 

 
       The Wigner distribution of a gI  atom preserves its energy in the time-frequency plane:  
 
  

   [12]

The Wigner distribution of a gI  atom 
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preserves its energy in the time-frequency plane: Catalin Dumitrescu 16 

∫∫
∞−

ωω dtdtWg ),( = | gI  | 2  - 1             (13) 

 
       By combining it with the energy conservation of the matching pursuit extension [equation 
(8)] and equation (11) one obtains: 

 

  

            [13]

By combining it with the energy 
conservation of the matching pursuit extension 
[equation (8)] and equation (11) one obtains:Analisys and Detection of EEG Transient Waves During Sleep 17 
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This justifies the interpretation of variable Ef(t,w) as the energy density of signal f(t) in the 

time-frequency plane. All references in this article to "Wigner Maps" are based on formula (12) 
- except for the fact that that the sum is not infinite. 

The method of highlighting the point where iterations should be stopped will be discussed 
in the next chapter. 
 

3. Simulations and practical observations 
 

Figure 1 shows the components of the simulated signals for the purpose of presenting the 
time-frequency methods. The signal base, marked IV, is a sum of signals I, II and III, that were 
drawn to clearly present the determining structures. 

Structure A is a sine wave modulated with Gauss's fourth power, structure C is constructed 
from straight lines while structures D and E are Gabor functions, i.e. Gaussian-modulated 
sinusoids. They have different modulation frequencies and widths and are centered at the same 
point in time. Structure B is derived from the delta Dirac function (single point discontinuity). 
  

            [14]

This justifies the interpretation of variable 
Ef(t,w) as the energy density of signal f(t) in 
the time-frequency plane. All references in this 
article to “Wigner Maps” are based on formula 
[12] - except for the fact that that the sum is not 
infinite.

The method of highlighting the point where 
iterations should be stopped will be discussed in 
the next chapter.

Simulations and practical observations

Figure 1 shows the components of the 
simulated signals for the purpose of presenting 
the time-frequency methods. The signal base, 
marked IV, is a sum of signals I, II and III, that 
were drawn to clearly present the determining 
structures.

Structure A is a sine wave modulated with 
Gauss’s fourth power, structure C is constructed 
from straight lines while structures D and E 
are Gabor functions, i.e. Gaussian-modulated 
sinusoids. They have different modulation 
frequencies and widths and are centered at the 
same point in time. Structure B is derived from the 
delta Dirac function (single point discontinuity).
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Figure 1. Components of  simulated signals. 

 
3.1 The matching pursuit algorithm with the dictionary of 

real Gabor functions 
 

EEG records that need to be processed numerically are real and discrete series in time. In 
order to analyze these signals a dictionary of real time frequency atoms should be compiled, 
generated in accordance to equation (1): 

 
  

Figure 1. Components of  simulated signals.

3.1 The matching pursuit algorithm with the 
dictionary of real Gabor functions

EEG records that need to be processed 
numerically are real and discrete series in time. 
In order to analyze these signals a dictionary of 
real time frequency atoms should be compiled, 
generated in accordance to equation [1]:Analisys and Detection of EEG Transient Waves During Sleep 19 

g(γ,φ)  (n) = K(γ,φ) gI (n- p) cos(2π φ−n
N
k

)                    (15) 

Index γ = (j, k, p) is a discrete analogue of I = (ξ, s, u) in equation (1). Assuming that the 
signal has N=2L samples, where L is an integer, then 0≤  j≤ L, 0≤  p <N iar 0≤  k < N. 

 Parameters p and k are sampled with a 2l interval. Such a limited choice of parameters, 
similar to the dual sampling of the time-frequency space in multi-resolution damped waves is 
a result of the compromise between representation precision and calculations complexity. 

 Figure 2 shows the result of sampling the in-octave frequency domain in such a dictionary. 
Mention should be made that longer lasting time atoms (upper octave) have finer sampling in 
the frequency domain. 

Parameter φ, which in equation (1) was hidden as the phase of a complex number, now 
appears explicitly. The value of K(γ,φ) is such that g(γ,φ) = 1. By integrating this formula [with 
continuous approximation] we obtain: 

 
  

  [15]

Index g = (j, k, p) is a discrete analogue of 
I = (x, s, u) in equation [1]. Assuming that the 
signal has N=2L samples, where L is an integer, 
then 0£  j£ L, 0£  p <N iar 0£  k < N.

 Parameters p and k are sampled with a 2l 
interval. Such a limited choice of parameters, 
similar to the dual sampling of the time-frequency 
space in multi-resolution damped waves is a 
result of the compromise between representation 
precision and calculations complexity.

 Figure 2 shows the result of sampling the 
in-octave frequency domain in such a dictionary. 
Mention should be made that longer lasting time 
atoms (upper octave) have finer sampling in the 
frequency domain.

Parameter f, which in equation [1] was 
hidden as the phase of a complex number, now 
appears explicitly. The value of K(g,f) is such that 
½g(g,f)½ = 1. By integrating this formula [with 
continuous approximation] we obtain:Catalin Dumitrescu 20 
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        The size of this dictionary (and the decomposition resolution) can be increased by 
oversampling with 2l (l>0) the time and frequency parameters p and k. The resulting dictionary 
has O(22lNlog2N) waveforms, so the complexity of the calculations as well as the over-sampling 
increases 2l times. Also, the time and frequency resolutions increase with the same factor. 
  

                                 [16]

      
The size of this dictionary (and the 

decomposition resolution) can be increased by 
oversampling with 2l (l>0) the time and frequency 
parameters p and k. The resulting dictionary has 
O(22lNlog2N) waveforms, so the complexity 
of the calculations as well as the over-sampling 
increases 2l times. Also, the time and frequency 
resolutions increase with the same factor.
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where fm is the sampling frequency of the analyzed signal fm. 
      Here, resolution is understood as the distance between the atoms centers that are time and 
frequency dictionary neighbours. It depends on octave j which corresponds to the "width" of 
an atom in time and frequency. 

The time deviation of the dictionary atoms defines our ability to measure the width in time 
of the signal structures represented by these atoms. It is possible to define the "width" of a time-
frequency atom as half the width of the window function g(n): 
  

                  [18]

where fm is the sampling frequency of the 
analyzed signal fm.

Here, resolution is understood as the 
distance between the atoms centers that are time 
and frequency dictionary neighbours. It depends 
on octave j which corresponds to the “width” of 
an atom in time and frequency.

The time deviation of the dictionary atoms 
defines our ability to measure the width in time of 
the signal structures represented by these atoms. 
It is possible to define the “width” of a time-
frequency atom as half the width of the window 
function g(n):
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π
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m
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f
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It changes with each octave j with a factor of 2, regardless the oversampling described 

above. 
Figure 3 shows the graphical representation of the Wigner function obtained from the 

decomposition based on the matching pursuit detection of simulated signal IV in Figure 1 
shown at the bottom of the figure. One may notice a perfect representation of the sinusoid, of 
the delta Dirac function and of the two Gabor functions [B, E, C, D] that represent the waveform 
present in the dictionary. Adding noise does not significantly change the resolution. 

 
 

3.2 Amplitude of a discrete Gabor function 
 
Variable <Rnf, gfn> [equation (4)] algorithmically calculated for each of the selected atoms 

is called a module. It is the amount from the signal energy that is accounted for by a particular 
waveform. However, in some cases, we need the value of structures amplitude. 

The relationship between the module and the amplitude of the window function of an atom 
in the Gabor dictionary - equation (15) - is given by equation (16). However, this formula gives 
us the amplitude of the window function. The effective peak-to-peak amplitude of the 
corresponding Gabor function may be smaller, depending on the frequency, phase and its 
octave parameters. Figure 4 shows the example of some Gabor functions in the dictionary 
designed from a segment of 2048 point. The window function amplitudes were normalizelized 
to 1 kHz equation (15) for all graphically drawn waveforms. 

The difference between the amplitude of the Gabor function and the amplitude of the 
window function introduced by discrete sampling may be seen in Figure 4. 

Figure 5 shows the relative difference between the double amplitude of the window 
function g, in equation (16), and the effective peak-to-peak amplitude of the discrete Gabor 
function in the frequency space. 

The calculations were performed for all octaves and atomic frequencies that would form a 
complete discrete Gabor dictionary for a segment with 2048 intervals, averaged for over 1099 
random phases. Mention should be made that only a subset of points in this plane represents 
the atoms actually present in the dictionary used in the calculations - compare with Figure 2. 
For this dictionary, there is a faster numerical implementation through the adaptation search 
described by Mallat and Zhang [1], [3]. 

 
 

3.3 Number of development waveforms 
 

Another practical aspect results from the fact that normally, one does not calculate infinite 
developments of the terms in equation (7). The iterations must be stopped at a certain point. 
The number of development waveforms can be, for example, determined by a percentage of 
signal dispersion resulting from the decomposition or set at a certain value. However, it is 
worthwhile to take a look at the behavior of the signal residue at each iteration. 

               [19]

It changes with each octave j with a factor 
of 2, regardless the oversampling described 
above.

Figure 3 shows the graphical representation 
of the Wigner function obtained from the 
decomposition based on the matching pursuit 
detection of simulated signal IV in Figure 1 
shown at the bottom of the figure. One may 
notice a perfect representation of the sinusoid, 
of the delta Dirac function and of the two Gabor 
functions [B, E, C, D] that represent the waveform 
present in the dictionary. Adding noise does not 
significantly change the resolution.

3.2 Amplitude of a discrete Gabor function

Variable <Rnf, gfn> [equation [4]] 
algorithmically calculated for each of the selected 
atoms is called a module. It is the amount from the 
signal energy that is accounted for by a particular 
waveform. However, in some cases, we need the 
value of structures amplitude.

The relationship between the module and 
the amplitude of the window function of an 
atom in the Gabor dictionary - equation [15] - 
is given by equation [16]. However, this formula 
gives us the amplitude of the window function. 
The effective peak-to-peak amplitude of the 
corresponding Gabor function may be smaller, 

depending on the frequency, phase and its octave 
parameters. Figure 4 shows the example of some 
Gabor functions in the dictionary designed from 
a segment of 2048 point. The window function 
amplitudes were normalizelized to 1 kHz equation 
[15] for all graphically drawn waveforms.

The difference between the amplitude of the 
Gabor function and the amplitude of the window 
function introduced by discrete sampling may be 
seen in Figure 4.

Figure 5 shows the relative difference 
between the double amplitude of the window 
function g, in equation [16], and the effective 
peak-to-peak amplitude of the discrete Gabor 
function in the frequency space.

The calculations were performed for all 
octaves and atomic frequencies that would form a 
complete discrete Gabor dictionary for a segment 
with 2048 intervals, averaged for over 1099 
random phases. Mention should be made that 
only a subset of points in this plane represents 
the atoms actually present in the dictionary 
used in the calculations - compare with Figure 
2. For this dictionary, there is a faster numerical 
implementation through the adaptation search 
described by Mallat and Zhang (1,3).

3.3 Number of development waveforms

Another practical aspect results from the 
fact that normally, one does not calculate infinite 
developments of the terms in equation [7]. The 
iterations must be stopped at a certain point. The 
number of development waveforms can be, for 
example, determined by a percentage of signal 
dispersion resulting from the decomposition or 
set at a certain value. However, it is worthwhile 
to take a look at the behavior of the signal residue 
at each iteration.

The approximation of the matching pursuit 
filter is nonlinear and the residues, not the signal, 
are decomposed at each iterative stage. Their 
norm converges to zero, as shown in equation [6]. 
However, asymptotic residual properties are the 
key to understanding the convergence properties 
of the matching pursuit filter. As shown in (1), 
the adaptation criterion is a chaotic map. This 
has been proven for a particular dictionary 
type (2) and has been confirmed by numerical 
experiments.
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3.4 Practical implementation procedures

In the brief description of the matching 
pursuit algorithm in Chapter 2 it was stated that 
at each step of the iterative procedure a vector gI 
is chosen to give the largest product with the Rnf 
residue: 
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| < Rnf , gI >| - maxI|< Rnf , gI >|            (20) 
 

Indeed, since the dictionary compiled for a finite discrete signal has a finite number of 
waveforms, this condition is met by at least one of them. However, in practice, the choice of 
the best waveform at each stage is based on certain procedures. A direct implementation of the 
above selection procedure, which is already a compromise in favor of lower computing 
complexity, would still require an enormous amount of computing resources. It is sufficient to 
consider, for example, the phase, continuous by its nature, as explicitly present in the real-time 
frequency atoms of the Gabor dictionary. The reasonable sampling of this parameter would 
produce a huge dictionary even for the relatively small dimensions of the signal space [equal 
to the number of intervals in the analyzed signal]. Consequently, in order to make the algorithm 
suitable for practical applications, certain procedures for optimizing the selection procedure are 
implemented. Because the method, by its very nature, provides a suboptimal solution, this is 
not a major disadvantage by itself if the chosen processes yield reasonable results. Nevertheless, 
that situation should be taken into consideration if we want to compare the results obtained 
through various implementations of the adaptative criterion. If the implemented optimization 
differs even slightly, the differences accumulate at each iteration because the development is 
not orthogonal. 

The problem of the optimal adaptation process is currently being studied. The preliminary 
results suggest that a selection procedure might be obtained that would improve the desired 
characteristics of the signal, such as, for example, the EEG morphology as perceived in the 
visual analysis. We believe that this research, along with advances in mathematics and lowering 
the cost of computing, will make algorithms based on the adaptative criterion an acceptable 
parameter for biomedical signals. 
  

            [20]

Indeed, since the dictionary compiled 
for a finite discrete signal has a finite number 
of waveforms, this condition is met by at least 
one of them. However, in practice, the choice 
of the best waveform at each stage is based on 
certain procedures. A direct implementation of 
the above selection procedure, which is already 
a compromise in favor of lower computing 
complexity, would still require an enormous 
amount of computing resources. It is sufficient to 
consider, for example, the phase, continuous by 
its nature, as explicitly present in the real-time 
frequency atoms of the Gabor dictionary. The 
reasonable sampling of this parameter would 
produce a huge dictionary even for the relatively 
small dimensions of the signal space [equal to 
the number of intervals in the analyzed signal]. 
Consequently, in order to make the algorithm 
suitable for practical applications, certain 
procedures for optimizing the selection procedure 
are implemented. Because the method, by its 
very nature, provides a suboptimal solution, this 
is not a major disadvantage by itself if the chosen 
processes yield reasonable results. Nevertheless, 
that situation should be taken into consideration if 
we want to compare the results obtained through 
various implementations of the adaptative 
criterion. If the implemented optimization differs 
even slightly, the differences accumulate at 
each iteration because the development is not 
orthogonal.

The problem of the optimal adaptation 
process is currently being studied. The 
preliminary results suggest that a selection 
procedure might be obtained that would improve 
the desired characteristics of the signal, such as, 
for example, the EEG morphology as perceived 
in the visual analysis. We believe that this 
research, along with advances in mathematics 

and lowering the cost of computing, will make 
algorithms based on the adaptative criterion an 
acceptable parameter for biomedical signals.
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Figure 2. Sampling of frequency [on horizontal axis, 0-1024] - octave [on vertical axis, 1-10] 

space within the limits of the Gabor dictionary discussed in chapter 3.1. 
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limits of the Gabor dictionary discussed in chapter 3.1.
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Figura 3. The Wigner representation obtained with MP for the signals shown below.  
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Figure 4. Examples of Gabor functions in a dictionary compiled for a segment of 2048 

points. Amplitude of window function [K(τ, θ) equation (15)] is normalized to 1. 
  

Figure 4. Examples of Gabor functions in a dictionary 
compiled for a segment of 2048 points. Amplitude of 

window function [K(τ, θ) equation (15)] is normalized to 
1. 



139

Analisys and Detection of EEG Transient Waves During Sleep 29 

 
 
 

 
Figure 5. The relative difference between the amplitude of the window function and the 

instantaneous peak-to-peak amplitude of the Gabor function. 
 

4. Results and discussions 
 

4.1 Detection of transient waves during sleep and their 
analysis based on the Matching pursuit parameterization 

 
Peaks during sleep play a major role in analyzing brain activity during sleep. 
Spontaneous rhythmic activity impulses in the 12 → 14 Hz band, against the EEG 

background of a subject in the light sleeping phase were first observed in 1935 by Loomis and 
others, which were called "peaks" ever since. 

Later, the terms sigma or sigma activity were recommended by the International Federation 
for Electroencephalography and Clinical Neurophysiology [IFSECN] in 1961, but their use was 
discouraged by IFSECN in 1974. In the "Glossary of Terms Commonly Used in Clinical 
Electroencephalograms "[IFSECN 1974] peaks are defined as" a group of rhythmic waves 
characterized by progressive growth amplitude and then gradual decrease "  

The definition given in [5] states that "the presence of the peak during sleep should not be 
defined unless it has a duration of at least 0.5s, that is, being able to count 6 or 7 distinct waves 
in a half-second period. (...) The term should only be used to describe activity between 12 and 
14 cycles/second ". In [6] we also find that "the peak waves are monomorphic, dysphasic and 
symmetrical to the baseline. Frequency is stable in band 12 → 14 Hz. The entire peak is 
variable, between 1 and 6 seconds. " 

Jankel and Niedermayer (1985) also discuss the controversial appearance of peaks with a 
frequency around 10Hz.  

Figure 5. The relative difference between the amplitude of 
the window function and the instantaneous peak-to-peak 

amplitude of the Gabor function.

Results and discussions

4.1 Detection of transient waves during sleep 
and their analysis based on the Matching 
pursuit parameterization

Peaks during sleep play a major role in 
analyzing brain activity during sleep.

Spontaneous rhythmic activity impulses in 
the 12 ® 14 Hz band, against the EEG background 
of a subject in the light sleeping phase were first 
observed in 1935 by Loomis and others, which 
were called “peaks” ever since.

Later, the terms sigma or sigma activity 
were recommended by the International 
Federation for Electroencephalography and 
Clinical Neurophysiology [IFSECN] in 1961, 
but their use was discouraged by IFSECN in 
1974. In the “Glossary of Terms Commonly Used 
in Clinical Electroencephalograms “[IFSECN 
1974] peaks are defined as” a group of rhythmic 
waves characterized by progressive growth 
amplitude and then gradual decrease “ 

The definition given in (5) states that “the 
presence of the peak during sleep should not be 
defined unless it has a duration of at least 0.5s, 
that is, being able to count 6 or 7 distinct waves 
in a half-second period. (...) The term should 
only be used to describe activity between 12 and 
14 cycles/second “. In (6) we also find that “the 
peak waves are monomorphic, dysphasic and 

symmetrical to the baseline. Frequency is stable 
in band 12 ® 14 Hz. The entire peak is variable, 
between 1 and 6 seconds. “

Jankel and Niedermayer (1985) also 
discuss the controversial appearance of peaks 
with a frequency around 10Hz. 

Peaks during sleep show variations 
depending on the morphology, frequency and 
spatial distribution of the wave, as well as the 
sleeping phase. The peak map varies with age 
and with some disorders of the central nervous 
system (7). Their precise description is important 
in the study of insomnia, depression, aging, drug 
effects.

Finally, a sharper terminological 
clarification is given by (8): “The peak of 
sleep of an electroencephalograph [recorded in 
patients or diseased subjects] should be carefully 
distinguished from the peaks discussed by 
neurophysiologists. These are peaks recorded 
in experiments with animals fed on barbiturates 
and they served as a model for understanding the 
genesis of physiological EEG rhythms, such as 
the alpha rhythm. “

4.2 Choice of peaks in time-frequency atoms

The results described were obtained from 
two-night recordings, on sick volunteers, usually 
7 hours of recorded EEG. There have been carried 
out numerical and visual analyses of the reference 
signals provided by Fz and Cz electrodes.

Segments of 20s in length [2048 points] 
were decomposed by using the matching pursuit 
algorithms (adaptative criterion) with 100 
iterations per segment. Although in most cases 
the algorithm found coherent structures [Chapter 
2], beyond this stage there were very small 
amplitude atoms that were far from the detection 
threshold.

The basic form of the waveforms in the 
Gabor dictionary [paragraph 3.2] is a good 
match for the form described in the definition of 
sleep time peaks [at the beginning of chapter 4]. 
Therefore, each peak should be represented by a 
time-frequency atom in this dictionary. However, 
in (7) we can find this warning: 

“It seems clear that the term” peak “implies 
a bell-shaped middle surrounded by a fall to the 
right and left. This peak form, however, is the 
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exception rather than the rule. An alpha wave 
train resembles more the crescendo-decrescendo 
form of the peak. Thus, the term “peak” is 
wrong if sleep peaks are involved. However, it 
is such a “nice” and frequently used term that no 
terminological change can be made. “

However, as we have already said, the 
Gabor dictionary was chosen due to the optimal 
time-frequency localization of Gabor’s functions 
and its application is not limited to peak type 
structures.

The main task is to choose structures 
corresponding to sleep peaks from the waveforms 
appropriate for the analyzed segment. Such 
a procedure will be operational within the 
parameters of the appropriate atoms: time, 
frequency, octave, mode and phase [equation 
[15]].

4.3 Relevant parameters

Frequency. In (7) the peak frequency range 
was defined as covering the 12 and 14 Hz interval. 
In the latest works, this range has been extended 
by 1 Hz up and down (11 ® 15 Hz). In (8) the 
authors explicitly stated that “There is no doubt 
(...) that the range 12 ® 14 Hz is too narrow.” In 
this paper, the frequency range for a structure to 
be considered a sleep peak was set at 11 ® 15 Hz.

An octave corresponds to the wavelength of 
the waveform [equation [19]]. For experimental 
conditions [sampling frequency = 102.4 Hz, 
length of analyzed period N = 2048 points] the 
following values are obtained for half of the 
period of one atom T1/2] in octave j [equation 
[19]]:

Table 1. An octave corresponds to the wavelength of the 
waveform

Octave j 5 6 7 8 9
Semiperiod T1/2[s] 0,29 0,59 1,17 2,35 4,7

Octaves 6 to 8 have been chosen. The 
numerical values of the time and frequency 
resolutions [equations [18] and [19]] for these 
octaves are given in the table below:

Table 2. Time and frequency resolution for octaves 6 and 
8

Octave j 6 7 8
Time resolution ΔT [s] 0,08 0,16 0,31
Frequency resolution Δf [Hz] 0,2 0,1 0,05

Naturally, current time is immaterial as far 
as classification is concerned, although it is an 
important parameter for evaluating results.

Finally, the main challenge is the problem 
of choosing amplitude parameter limits for 
atoms likely to be considered sleep peaks. In 
the definitions of sleeping peaks [chapter 4] no 
assumptions about amplitude were made, which 
naturally means that each “visible” structure 
that meets the criterion of time and frequency 
scattering should be considered a peak. This 
translates the problem to a lower amplitude area 
(or rather to the area with a lower local signal/
noise ratio), which discriminates the structure 
against the background, with no upper limits (9).

The notion of “visibility” in the terms of 
the matching pursuit filter method means that the 
structure has been detected - that is, the optimal 
waveforms were determined in the iterative 
procedure before applying the algorithm “stop 
criterion” [chapter 3]. The amplitude has been 
left as a free parameter for the investigation of 
the visual and automated detection mode.

Amplitude corresponds to the parameter 
module that describes the dictionary’s atoms. 
The relationship between the module and the 
amplitude of the window function of an atom in 
the Gabor dictionary - equation [15] - is given by 
equation [16]. However, this formula only gives 
us the amplitude of the window function. 

The effective peak-to-peak amplitude of the 
corresponding Gabor function may depend very 
little on the frequency and phase parameters, as 
shown in paragraph 3.2.

Formula [16] may be simplified for atoms 
that can be considered sleep peaks. They are in 
the octaves 6 to 8, with the frequency between 11 
and 15 Hz, that corresponds to parameter k = 220 
® 300. In this case:
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which gives us an approximate formula for the window function amplitude: 
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which gives us an approximate formula for 
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the window function amplitude:
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However, the notion of peak amplitude 
during sleep deduced from a visual analysis is 
given rather by the actual difference between 
the maximum and minimum values observed 
(measured) than by the amplitude of the envelope 
[10]. Furthermore, in our case, the visual analysis 
was performed on digitized data, as observed on 
the computer monitor. Due to these conditions, 
a correction factor was added to formula [23] 
in order to calculate the peak-to-peak effective 
amplitude instead of the window function 
amplitude in order to make it possible to calculate 
the structure amplitudes.

The automatic detection is illustrated in 
figures 6, 7, 8.
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Figure 6. Automatic detection using histogram. a) TP / (TP + FP) 
vs. threshold amplitude b) in amplitude ranges c) and d) - detection histograms 

 TP and FP vs. amplitude (TP - true positive, FP - false negative). 
 
 
 
 

Figure 6. Automatic detection using histogram. a) TP / 
(TP + FP) vs. threshold amplitude b) in amplitude ranges 
c) and d) - detection histograms  TP and FP vs. amplitude 

(TP - true positive, FP - false negative).
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Figure 7. The same time-frequency energy (sleep spindles wave) distribution as in the 
previous figure, frequency increases to clearly show peaks in 12 → 15 Hz range. 

  

Figure 7. The same time-frequency energy (sleep spindles 
wave) distribution as in the previous figure, frequency 
increases to clearly show peaks in 12 ® 15 Hz range.
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Figure 8. The peak amplitudes over time, above the hypnograms, for 21 EEG channels. The 
sleeping peaks detected in representations marked as sleep phase 2 activity when the transient 

waves appear. 
The sleep spindle morphology measures from AD patient is illustrated in Figure 9. 

  

Figure 8. The peak amplitudes over time, above the 
hypnograms, for 21 EEG channels. The sleeping peaks 

detected in representations marked as sleep phase 2 
activity when the transient waves appear.

The sleep spindle morphology measures 
from AD patient is illustrated in Figure 9.
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Figure 9. A typical lower sleep spindle density an AD patient. 

 
Finally, the methodology presented in this paper has been validated for an application with 

a certain degree of difficulty, namely, the detection of the K-complex and sleep spindle in the 
sleep electroencephalogram [11] [12]. 

It results from this paper that the proposed solution is among the performance solutions 
described in literature [12]. 

In addition, these results may be improved by correlating information from multiple 
electroencephalogram records. 
 

5. CONCLUSION 
 

The adaptation of the representation may be improved by extending the function dictionary 
used to explain the signal change. The redundancy introduced in this way requires a method of 
choosing a subset of waveforms in the dictionary for the description of the signal.  

The selection criterion can be, for example, based on minimizing the representation error 
for a given number of waveforms. The solution to this problem is polynomially difficult to 
determine, and such an optimal expansion is not stable as compared to the number of allowed 
waveforms. Both these problems are absent in the matching pursuit method which provides the 
sub-optimal solution for the problem of signal expansion as compared to a redundant 
dictionary. 

The matching pursuit is an algorithm that iteratively adapts waveforms from a redundant 
dictionary to local signal structures. The Gabor Function Dictionary describes the structures 
present in the signal in terms of frequency, production time, time range, amplitude and phase 
with a resolution that can be adjusted up to their theoretical limits. Dictionaries compiled from 
arbitrary waveforms, not necessarily analytical functions, can be designed to improve the 
detection of structures with a particular morphology. However, the practical application of the 
matching pursuit algorithm, even for dictionaries compiled from analytical functions, requires 
the optimization of calculations in order to increase computing speed. This must be taken into 
account when comparing the results obtained with other implementations, even if the same 
dictionary was used. 

However, it may be stated that the algorithm based on the matching pursuit algorithms 
makes the most complete and accurate description of the time-frequency structures of all 

Figure 9. A typical lower sleep spindle density an AD 
patient.

Finally, the methodology presented in this 
paper has been validated for an application with a 
certain degree of difficulty, namely, the detection 
of the K-complex and sleep spindle in the sleep 
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electroencephalogram (11,12).
It results from this paper that the proposed 

solution is among the performance solutions 
described in literature (12).

In addition, these results may be improved 
by correlating information from multiple 
electroencephalogram records.

CONCLUSION

The adaptation of the representation 
may be improved by extending the function 
dictionary used to explain the signal change. The 
redundancy introduced in this way requires a 
method of choosing a subset of waveforms in the 
dictionary for the description of the signal. 

The selection criterion can be, for example, 
based on minimizing the representation error for a 
given number of waveforms. The solution to this 
problem is polynomially difficult to determine, 
and such an optimal expansion is not stable as 
compared to the number of allowed waveforms. 
Both these problems are absent in the matching 
pursuit method which provides the sub-optimal 
solution for the problem of signal expansion as 
compared to a redundant dictionary.

The matching pursuit is an algorithm that 
iteratively adapts waveforms from a redundant 
dictionary to local signal structures. The Gabor 
Function Dictionary describes the structures 
present in the signal in terms of frequency, 
production time, time range, amplitude and 
phase with a resolution that can be adjusted up 
to their theoretical limits. Dictionaries compiled 
from arbitrary waveforms, not necessarily 
analytical functions, can be designed to improve 
the detection of structures with a particular 
morphology. However, the practical application 
of the matching pursuit algorithm, even for 
dictionaries compiled from analytical functions, 
requires the optimization of calculations in 
order to increase computing speed. This must be 
taken into account when comparing the results 
obtained with other implementations, even if the 
same dictionary was used.

However, it may be stated that the algorithm 
based on the matching pursuit algorithms makes 
the most complete and accurate description of 
the time-frequency structures of all available 
methods (11). This approximation offers new 

possibilities for tracking EEG transitions 
(transient wave). The decomposition of the 
matching pursuit algorithm in time series can 
also complete a full EEG parameterization, 
improving the possibilities offered by previously 
applied methods (12). 
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