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ABSTRACT. The VRS network-based technique has become the main precise GNSS
surveying method especially for medium-range baselines (approximately 20-70 km). The key
concept of this approach is to use the observables of multiple reference stations to generate
the network correction in the form of a virtual reference station for mitigating distance-
dependent errors including atmospheric effects and orbital uncertainty at the user’s location.
Numerous GNSS data processing strategies have been adopted in the functional model in
order to improve both the positioning accuracy and the success of ambiguity resolution.
However, it is impossible to completely model the aforementioned errors. As a result, the
unmodelled residuals still remain in the virtual reference station observables when the least
squares estimation is employed. An alternative approach to deal with these residuals is to
construct a more realistic stochastic model whereby the variance-covariance matrix is
assumed to be homoscedastic. This research aims to investigate a suitable stochastic model
used for the VRS technique. The rigorous statistical method, MINQUE has been applied to
estimate the variance-covariance matrix of the double-difference observables for a virtual
reference station to rover baseline determination. The findings of the comparison to the equal-
weight model and the satellite elevation-based model indicated that the MINQUE procedure
could enhance the positioning accuracy. In addition, the reliability of ambiguity resolution is
also improved.
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1. INTRODUCTION

Classical single-based RTK positioning is restricted to a maximum baseline length of 20 km
between a reference station and rover receiver. Network-based RTK positioning maps
distance-dependent errors including atmospheric biases and orbit errors to preserve cm-level
accuracy for baseline distances of up to 70 km. It was confirmed that the ionospheric error is
the main error source which degrades the GNSS positioning performance in Thailand due to
geomagnetic disturbance in low latitude region (Charoenkalunyuta.et al, 2012). The core of
network-based positioning is to use multiple reference stations in order to interpolate the
distance-dependent errors for specific rovers operating in the network coverage area and
transmit the correction information to rovers. Currently, there are several implementations for
distributing corrections that network RTK systems provide. The virtual reference station
(VRS) method is the most commonly used technique for broadcast network correction
parameters. A VRS is a non-existent GNSS reference station located in close proximity to the
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rover’s location. In order to generate the VRS, the following server-side computations are
required:

1) Network ambiguity: the purpose of this step is to resolve the integer ambiguities and
calculate residual errors for the individual baselines among the reference stations.

2) Error Interpolation: Residual errors from step 1 are used as inputs for interpolating the
distance-dependent error at the VRS station coordinate.

3) VRS observables generation: VRS observables are generated based on the interpolated
errors estimated to resemble the real reference station observables in the network.

Regarding better positioning accuracy, most of the previous investigations aimed to
improve the functional model of the server-side process. In order to compute more accurate
VRS observables, two major challenges must be considered. Firstly, how to correctly resolve
integer ambiguities between reference stations in real-time mode and renew fixing
ambiguities during the situations when there is a long data gap, or when a new satellite rises
(Chen et al., 2004). Secondly, the distance-dependent errors at reference stations should be
precisely modelled and interpolated to a rover location within network coverage. Several
interpolation methods have been proposed and compared in detail (Al-Shaery et al., 2012).
On the other hand, the rover-side calculation just simply processes the baseline between the
obtained VRS observables and rover station observables. It is usual to use the double
difference technique (DD) as the functional model with no attempt to enhance this approach
due to the short distance between the VRS and rover station. However, the least-squares
adjustment of baseline processing also requires the stochastic model as another part of the
calculation to play an important role in observation weighting. The stochastic model (the
statistical characteristics of the observations in the form of the variance-covariance matrix
(VCV)) is often constructed based on the assumption (for simplicity) that all observations
have the same variance and assuming they are statistically independent.

In fact, the uncertainty of both network error modelling and the interpolation method
which are utilized to form VRS observables are not perfect. Unmodelled biases could be
present and subsequently propagate into the VRS observables. As a result, each VRS
observables tend to have a lower quality than the real GNSS observables collected by the
receiver and would be of different precision depending on the changeable conditions, e.g.
atmospheric variation, multipath error, satellite elevation, moreover, the correlation between
the observations should be considered. Therefore, it is reasonable to describe the stochastic
model more realistically than the standard method to obtain optimal estimates of the least-
squares solution of the double difference equation. There remains therefore some room for
improvement in the stochastic model, and consequently this investigation has focused on the
MINQUE procedure. The MINQUE method is a rigorous statistical procedure which
determines the elements of the VCV matrix by using the residuals obtained from the least-
squares process. Musa et al. (2003) applied this procedure for the VRS technique, however,
their study was only conducted using single-frequency for static surveying. Thus, the
MINQUE procedure will be revisited for rapid static and kinematic surveying as well as inter-
frequency correlations and the use of dual frequency carrier phase observations. The
following sections will describe the stochastic model on the rover-side of the VRS technique,
the MINQUE theory, an experiment to test these models and the presentation of results and
some discussion.

2. VRS GENERATION

When the DD distance—dependent errors are modelled for the network coverage area by the
server-side computation, VRS carrier phase observables are subsequently generated based on
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the following components: 1) Carrier phase observables at the master station 2) Precise
coordinate of the master station 3) VRS coordinate (the rover’s approximate position) and 4)
Distance-dependent error correction at the VRS position.

VRS observables are calculated by applying the DD distance—dependent errors to the
master reference station observables and altering the geometric range as shown in the
equation below:

@L,Lk = Ellm.l..k + P L,m.k-l_ v:,ml,k (1)

Boak = Dz TP vmxt Vomak
where

v and m denote virtual reference station and master reference station
1 and j denote the reference satellite and associated DD pair satellite
1 and 2 denote L1 and L2 of GPS carrier phase observables

k indicates the k™ epoch

@ denotes the undifferenced phase observable of VRS to satellite j

@ denotes the undifferenced phase observable of master reference station to satellite j

p L -, denotes the difference between the geometric distances of the VRS to satellite j and
of the master reference station to satellite j

ijm denotes the DD distance—dependent errors between the VRS and master reference
station and satellite i and j

3. ROVER-SIDE PROCESSING OF VRS

After the generated VRS observables are transmitted to the rover receiver via a
communication link in the proprietary format or RTCM, then the rest of the process on the
rover side is the same as single base RTK positioning. The double differenced technique
(DD) for carrier phase observations is widely used to formulate the functional model of least

squares since it can efficiently eliminate most systematic errors. The DD equation can be
written as:

B i i Lj i i
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where
u and v denote the rover station and virtual reference station
i and j denote the reference satellite and associated DD pair satellite
1 and 2 denote L1 and L2 of GPS carrier phase observables
k indicates the k™ epoch

@1, denotes the DD observable; p ! denotes the DD geometric distance
Ni;fu denotes the DD ambiguity; A denotes the wavelength of carrier phase

- . == z - .
I.J, denotes the DD ionospheric error, while I)) ., = Jf;} |

Ti;fu denotes the DD tropospheric error; Di;fu denotes the DD of orbital error.



20

It is noted that the VRS station and the rover station are very close to each other. The DD
of the distance-dependent errors (I3, T:3 , QX ) are therefore very small and can be ignored.

wuf vt

To compute baseline components and ambiguity terms in the least-squares adjustment, a set
of linearized double-differenced observables can be written as:

1= Ax+v 3)

where 1 is the vector of observed-minus-computed (OMC) observables, A is the design
matrix, x is the vector of the unknown parameter, and v is the vector of residual errors.
Assuming the expectation of v is zero, and:

E(wh=C =P! 4)

where C is VCV matrix, P is the weight matrix as calculated from the inverse of VCV of
the DD observables. The least-squares estimator of the unknown parameter x is:

x =(ATPA)YTATPI (5)

where x is the vector that includes the three baseline components and the unknown DD
ambiguities and A is the design matrix.

Obviously, in addition to the accurate functional model in terms of the design matrix and
OMC matrix, equation (3) is also dependent on the weight matrix. The weight matrix is the
inverse of the VCV matrix. The role of the stochastic model is to specify the reliable variance
and covariance of the DD observables in the VCV matrix.

In the simple method, a so called equal-weight model, the VCV matrix of DD observables
would be calculated under the basic assumption that all carrier phase observables of the VRS
and rover station have the same precision and no spatial and temporal correlation between
them. As the result, the VCV of undifferenced observables is a-priori-defined as the diagonal
matrix while the diagonal elements have the same value and the off-diagonal elements are
ignored (zero value) even if they are known to exist. The subsequent step is the derivation of
the VCV matrix of DD observables from the VCV matrix of the undifferenced observables
using the error propagation law. It is noted that the VCV matrix at any epoch was partially
populated with the correlation between two DD observables in the same frequency but the
correlation between the DD in different frequencies is absent as shown below:

4 2 ... 2 0 ... .. 0 7
2 4 .. 2 F o
VCV — :}_2 2 2 we 4’ D o wa D (6)
o .. .. 04 2 .. 2
oo P2 4 2
.. .. 0 2 2 . 4

where o denotes the variance of undifferenced GNSS observable.
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4. REALISTIC STOCHASTIC MODEL

Although the DD functional model can mitigate significant systematic errors, there remain
unmodelled systematic errors due to insufficient knowledge about the physical phenomena of
error sources. It is possible to further improve the accuracy and reliability of positioning
through the stochastic enhancement. The VCV matrix should have well-defined variances
which are quite different for each VRS-rover double differenced observables depending on
atmospheric variation in the network coverage area and GNSS satellite-receiver geometry
during that time. Moreover, the covariances should be formulated for the following
correlations.

1. Spatial correlation is defined as the correlation between two observations from different
satellite pair at the same time and epoch.

2. Frequency cross correlation is defined as the correlation between two observations that
have different phase (e.g. L1 and L2 for GPS observables), observing at the same satellite
pair and the same epoch

3. Time correlation is defined as the correlation between two observations from different
epochs but the same satellite pair and phase.

Previous research has developed methods to determine the elements of heteroscedastic
VCV matrix. Their approaches are based on the error propagation law whereby some
reasonable quality indicators are used as the inputs of the model. The satellite elevation angle
has been commonly used in the weighting schema. The basic assumption is that
measurements at the lower elevation angles suffer more strongly from atmospheric
disturbance and multipath effect. The VCV matrix of DD observables at any epoch would be
defined according to the functions of satellite elevation angle and the sine function is usually
used to calculate the variance of the measurements in several studies. It is expressed by the
following formula (Luo et al., 2014):

(O + Oref Orer Orer [] D T
Qr:ef' qz + Oref Qr:ef'
Oref Oref Om T Qref 0 . 0
VCV = 7
E] [] Q1 t Qrer Orer Orer ( )
qE‘E‘F dz + Orer q!:E‘F
0 0 Qref Qref Om + Qref -
h 1 1
ere qi=———— =
WAEE U inenz 1 (sin 6o

m denotes the number of satellite pairs at the specified epoch
8; denotes the satellite elevation angle for associated DD pair satellite i (i=1, 2,.., m)
B,..¢ denotes the satellite elevation angle for reference satellite

Moreover, there have been several attempts to construct more accurate model for the VRS
network-based RTK through the use of the additional quality indicators for instance: Odijik
(2000) determined the empirical standard deviation of DD ionosphere delays from 1-hour
sessions and used this to setup the VCV matrix; Prochniewicz et al (2016) used the variance
estimate obtained from the ordinary kriging interpolation as the quality indicator of network
correction certainty. However, this paper aimed to propose an alternative method to
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determine the VCV matrix. MINQUE (Minimum Norm Quadratic Unbiased Estimation) is a
famous statistical method for estimating VCV matrix components (Rao, 1971). Its rigorous
calculation means that all elements in the VCV matrix would be directly estimated by
themselves with respect to the unknown parameter in the least-squares solution. Similarly, the
parameters in the functional model is calculated. The basis of this variance component
estimation is to use the least squares residuals of observables to formulate a-posteriori VCV
matrix. It is assumed that if the observation period is long enough to make adequately
redundant observations, the residual series could represent the information of the unmodelled
biases and measurement noise due to the imperfect functional model. This complex VCV
matrix is more realistic than the standard method because DD observables have different
variances, the correlations can be taken into account and even the cross correlation can be
considered.

Satirapod et al. (2001) has initially utilized the MINQUE procedure in single-frequency,
single base static survey and developed an iterative model for handling temporal correlation
between epochs. Musa et al. (2003) also tested the MINQUE technique with a single-
frequency static survey using the VRS technique with 2-hour observation sessions. Their
findings indicated that applying MINQUE could improve the reliability of ambiguity
resolution. Nevertheless, the calculated baseline components are close to that of the standard
stochastic model. Theoretically, it was possible that MINQUE method could also construct
the appropriate stochastic model for VRS in the case of RTK or rapid static surveys.
Jongrujinan and Satirapod (2018) showed promising results based on the use of MINQUE
technique on VRS GNSS network-based technique in rapid static surveying. However, there
are some difference compared to static surveying. Firstly, a lower number was used whereby
one solution is possible with just 10-20 epochs approximately. Secondly, the time correlation
may be neglected because of the short time period. The MINQUE algorithm is expressed as
below:

In the following Gauss-Markov model with n measurements and t unknowns:
l = Ax+v (8)

where 1 is the n x 1 vectors of the measurements ; v is the n x 1 vector of residuals ;
A is the n x t design matrix; x is the t x 1 vector of the unknown parameters.

For a session solution with m epochs of data, the full VCV matrix of double differenced
observations is :

_ pl_ vk
EIIEIEEIL are the variance-covariance components; k is the number of the unknowns in

the VCV component; m is the number of satellite pairs at the considered epoch and
T, T;.....T. are the so-called accompanying matrices as shown:
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10 0 0 0 0 0 0 0 0 00 0 0 0
00 0 0 0 01 0 0 0 0 0 0 0 0
T, - [0 00 0 0| 1o [00 0 00| q.-000 0 0
0 0 0 0 0 0 0 0 0 0 00 0 0 0
0 0 0 0 0 00 0 0 0 00 0 0 1
01 0 0 0 00 1 0 0 0 0 0 0 0
100 = 00 00 0 0 0 00 0 0 0
Tpa=|0 © 0 0 0 0| [ 00 =00 ;_foo0o - 00
0 0 0 0 0 00 0 0 0 00 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 10

When P is the weight matrix of the observations and C is the VCV matrix of the
observations. A minimum norm quadratic unbiased estimation of the linear function of 8, ;
g101+g202+.. .+ gk is the quadratic function 1"MI if the matrix M is determined by solving

the following matrix trace minimum problem:

Tr {M.C.M.C}=min ; subject to MA = 0, Tr {MT,}=g, (i= 1,2.......k)

where Tr{} is the trace operator of a matrix; the variance-covariance components can be
estimated as :

8 =(6,.6,.....8) =S"q (10)

where the matrix S = {Si} with Sij = Tr{RTiRT;} (11)

and the vector q={qi} with qi=1"RTiRI (12)
when R=PQP (13)

with Qv =P — A(A'PA)!'AT being the adjusted residual cofactor matrix.

where R can be expressed by a partitioned matrix:

Rll le
R= : :
1 R

where m is the number of the observation epoch in a session
Since the relationships between v and 1 are:

v =-QvPI (14)
and
PQvPv = -PQ\Pl = Pv (15)
According to equation (13) and (14), equation (12) can be further written as:

gi = I'RTiRI = I"PQ\PT;PQ.Pl = v'PT;Pv (16)
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It can be noticed from equation (10), (11), (12), (13) that elements of the VCV matrix are
implicitly defined. These cannot be estimated directly, therefore an iterative process must be
performed to solve the equation. Initially, the a-priori value of variance-covariance

components (Eli[I ) could be given by using the equal-weight model. The VCV matrix and the
first-iteration estimate {EI?] can be obtained by equation (10). Subsequently, based on using

the previous estimate (87) as the priori value, the new VCV estimate (87} can be obtained
in real-time from the (j+1) iteration as below:

67 =S1(87)q(8”) ;j=1.2,... (17)

This is called the iterated MINQUE. If 8 converges, the converging value of 8 satisfies
the following condition:

S(8)8 =q@®) (18)

which can be further expressed as:
Tr{R(6 )Ti} = 1"R(8))T:iR(8 )1

5. EXPERIMENTAL RESULTS AND ANALYSIS
5.1 Test data

The 6-hour GPS dataset collected from six CORS stations of Thai organizations (Figure 1) on
February 15 2010 during the period from 3:00 to 9:00 AM was used to test the proposed
procedure. It was sampled at a 30-second rate and the cut-off elevation angle was set to 10
degrees.

HIOTN

200

Fig 1. The set of CORS used for this experiment
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5.2 Establishment of reference coordinates

In order to obtain accurate reference coordinates of CORS stations, 7 days of GPS data on L1
and L2 frequencies (observed during February 1-7, 2010) were processed using the Bernese
GPS processing software. A one-day solution was obtained for each station using a standard
baseline processing procedure. An International GNSS service (IGS) station was selected as a
fixed station and the IGS final orbits were also introduced in the data processing step. The
weekly averaged coordinates of an individual station were used as reference coordinates for
subsequent analysis.

5.3 Processing strategies

As shown in Figure 1, one reference station (CUSV) was simulated as a rover station and the
other five stations (BLAN, KTBN, BPLE, OKRK, PKKT) were used as network reference
stations altogether with IGS orbit to generate VRS in form of RINEX by the Trimble Total
Control software. Matlab-based CUGPS software was developed to process the baselines
between virtual reference station and rover station in the different stochastic models then the
experiment was conducted for the investigation purposes as follow.

Ambiguity-fixed solution: The beginning of the study is to evaluate the impact of
different stochastic models on the ambiguity-fixed solution. The ambiguity resolution is the
key process to transform the carrier phase into high accuracy carrier range measurements.
Rapid static survey and initialization/re-initialization process in RTK, especially, need a
limited number of epochs in one solution. Two indicators, including the position accuracy and
reliability of ambiguity resolution, were considered to determine the number of epochs
required. The GNSS data was divided into segments (240 sessions). Subsequently, each data
segment was separately processed and the baseline solution between VRS observables and
rover observables was obtained by a developed software.

Firstly, the float solution was carried out by least squares adjustment with the DD as the
observation equations. Meanwhile, the VCV matrix is determined by three stochastic models:
1) Equal-weight model , 2) Elevation angle-based model, 3) MINQUE procedure. It is noted
that the convergence of the iterative method for MINQUE technique is not perfectly
successful when using less than 13 epochs in the solution. Therefore, testing batches of GNSS
data varying from 13 to 20 epochs was performed.

Secondly, the LAMBDA method (De Jonge and Tiberius, 1996) was used to determine
the integer value for the ambiguities. LAMBDA considers the integer ambiguity set that
results in the minimum quadratic form of the integer least squares residuals as the best
solution. It takes the estimated float solution together with the VCV matrix of parameters as
inputs to deliver the estimated integer ambiguity set. To assure the ambiguity set candidate
from LAMBDA, the F-ratio of each session is computed in the validation test of ambiguity
resolution. The F-ratio, the ratio of the second best and the first best minimum quadratic form
of the least-squares residuals, can indicate the potential that the best integer ambiguity set
would be statistically better than second best set in the ambiguity set searching process. The
larger the ratio value, the more reliable the ambiguity resolution is obtained. It is general
practice to validate resolved ambiguities using the F-ratio test with the critical threshold value
of 2 (Landau and Euler, 1992). If the F-ratio value is more than this threshold, it is likely that
the ambiguity set is estimated correctly and classified as acceptable status in the
discrimination test. Figure 2 presents the F-ratio comparative results between each scenario.
Although all stochastic models can provide 100 percent ambiguity success rate if 2 is
considered as the critical value of the discrimination test, it is obvious that F-ratio values
obtained by the MINQUE procedure (MQ) are consistently larger than those of the equal-
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weight model (EQ) and the elevation angle-based model (EL) in all session lengths. These
results suggest that the confidence in the ambiguity resolution is improved.
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Fig. 2. F-ratio of different stochastic models

Finally, the fixed solution is computed by the obtained integer ambiguities. The final
coordinate results and the reference coordinates of each segment were used to determine the
Root Mean Square Error (RMSE) values in both horizontal and vertical components. These
RMSE values represent the performance of the VRS technique under each stochastic model
obtained from different session lengths. As the results from Table 1 show, comparing to the



27

equal-weight model, the MINQUE procedure can produce 8 percent better quality in
horizontal RMSE (about 1.3 millimetres) and the vertical RMSE of 12 percent better quality
(about 3.8 millimetres) was achieved. Similarly, comparing to the elevation angle-based
model, the position accuracy is improved by 5 percent (about 0.8 millimetres) of horizontal
components and 5 percent (about 1.5 millimetres) of vertical component. Related to the
results in Table 2, the MINQUE procedure and the elevation angle-based model tend to have
smaller corresponding standard deviation values, compared to the equal-weight model in all
session lengths.

Table 1. RMSE accuracy results of baseline components under each stochastic model.

Number H RMSE (mm.) V RMSE (mm.)
Epoch MQ EL EQ MQ EL EQ
13 16.6 17.4 18.4 32.8 333 37.0
14 16.4 17.1 18.3 33.0 33.0 36.2
15 16.2 16.8 17.4 31.7 32.2 36.4
16 16.4 16.8 17.2 31.9 32.5 35.7
17 16.5 16.5 17.2 31.9 33.7 37.1
18 16.4 16.9 17.6 31.9 33.2 35.1
19 16.4 16.9 17.2 32.4 32.4 35.5
20 16.5 17.0 17.4 32.1 323 35.1

Table 2. S.D. results of baseline components under each stochastic model.

Number H SD. (mm.) V SD. (mm.)

Epoch MQ EL EQ MQ EL EQ
13 1.1 1.1 1.4 1.2 1.3 1.6
14 1.0 1.0 1.4 1.2 1.2 1.6
15 0.8 1.0 1.2 1.3 1.3 1.4
16 1.0 0.8 1.2 1.2 1.2 1.6
17 1.0 1.0 1.1 1.3 1.3 1.4
18 1.0 1.0 1.2 1.2 1.2 1.4
19 1.0 1.1 1.2 1.2 1.2 1.3
20 1.1 1.1 1.2 1.2 1.2 1.3

Epoch-by-Epoch solutions: When the ambiguity resolution can be resolved in the
initialization stage, a 600-epoch GNSS dataset was performed with an epoch-by-epoch
solution. In case of the RTK, one way to obtain the epoch-by-epoch solution is to use the time
sliding window technique. The time sliding window may generally be assigned backwards
from the latest epoch to several previous epochs. The coordinate of the current epoch will be
produced from the epochs within this sliding window and then continue to move the sliding
window forward to produce the next solution in a step by step manner.

The 15-epoch width sliding window was selected in this section to produce the solutions
with known ambiguities because of its good performance in the previous test. In case of the
MINQUE procedure, the fixed residuals of the DD observables and the corresponding VCV
matrix of residuals were calculated and sent to the MINQUE procedure for the VCV of DD
estimation. On the other hand, the VCV matrix for an epoch under the equal-weight model
and the elevation angle-based model were computed by equation (6) and (7) respectively.
Afterward, the rover coordinate results of each epoch and the reference coordinates were used
to determine the horizontal and vertical accuracy. The position accuracy comparison of the
MINQUE and the equal-weight model at each epoch is shown in Figure 3. The green bar



28

represents the better accuracy of position when the MINQUE is implemented (over-
performance) and the red bar indicates under-performance. For overall performance, the
comparison shows that the MINQUE procedure improves approximately 6 percent (about 1.1
millimetres) for horizontal accuracy and 8 percent (about 1.9 millimetres) for vertical
accuracy. With reference to Figure 4, comparing to the elevation-based model, the MINQUE
procedure performs 4 percent more accurate horizontal component (about 0.7 millimetres)
and 4 percent more accurate vertical accuracy (about 0.9 millimetres).
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Fig. 4. Position accuracy comparison of MINQUE and elevation angle-based model (EL)
(Outperformance of MINQUE — Green; Underperformance of MINQUE — Red)

6. CONCLUSIONS

In this paper, three different stochastic models have been tested with the VRS technique. The
MINQUE procedure is proposed to construct the more realistic stochastic model. Overall the
results of the ambiguity-fixed solution reveal that the use of MINQUE with limited epoch
length can produce better baseline components accuracy and more reliable integer ambiguity
determination, compared with the two other models. In addition, to integrate the sliding
window together with MINQUE also shows improved performance for a kinematic survey.
Lastly, additional attempts for the simplified MINQUE (Satirapod et al., 2002) are required
for testing fewer epochs in one solution
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