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ABSTRACT 
We describe in details the algorithms used in modelling the self-shadowing between 
spacecraft components, which appears when computing the surface forces as precisely as 
possible and especially when moving parts are involved. This becomes necessary in planetary 
geodesy inverse problems using more and more precise orbital information to derive 
fundamental parameters of geophysical interest. Examples are given with two Mars orbiters, 
which show significant improvement on drag and solar radiation pressure model multiplying 
factors, a prerequisite for improving in turn the determination of other global models. 

Keywords :  Surface forces. Self-shadowing. Polyhedral decomposition. Pixelation. Mars 
Planet. 

1 INTRODUCTION
The modelling of disturbing forces acting on any spacecraft, Earth or planetary artificial 
satellite, has been the subject of great attention since decades. Not only is this necessary for 
precise navigation in the environment of a studied body, but it is essential in the analysis of 
physical phenomena at stake in space dynamics and in the derivation of underlying 
parameters, such as gravity field and atmospheric density model coefficients, from 
observations (e.g. distance, Doppler measurements) of trajectories, a well-known inverse 
problem of celestial mechanics and satellite geodesy. 

The surface forces (atmospheric drag,  direct,  rediffused and infrared solar radiation 
pressure, and thermal effects) are especially difficult to model all the more as they depend on 
the different elements of a spacecraft which may be geometrically and physically complex 
and may vary with time. Not only the spacecraft orientation in space (its attitude) is usually 
time dependent but spacecraft elements themselves may also vary their position with respect 
to each other. In this context an approximate approach is usually adopted which consists in 
treating each surface element (a so-called plate) independently, also in simplifying their 
relative motions if any. In so doing it has been shown (Mazarico, 2008) that the occultation of 
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some surface elements facing a given direction (of the drag, or of the direct solar radiation 
pressure for instance) by others, which is called self-shadowing, may significantly impact the 
value of the surface forces, and in turn affect the accuracy with which some parameters may 
be determined. Examples of Martian atmosphere drag coefficients retrieved from orbit 
observations of Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) with and 
without accounting for self-shadowing, are given in Mazarico et al. (2009). In turn these 
uncertainties may affect the determination of other parameters such as the time variable 
gravity field spherical harmonics (Konopliv et al., 2011). 

The computation of self-shadowing effects has not been often documented in the 
literature. It seems that the first significant work was done by Ziebart (2001) who solved the 
problem via ray tracing methods; it was then applied to GPS and altimetry satellites (Ziebart 
et al., 2005). His approach adopts a two steps strategy. First, the ray tracing method is used to 
accurately determine the effects (assuming an approximate orbit) and to fit an analytical 
model. This model is then introduced in the orbit determination step. Then Mazarico (2008) 
and Mazarico et al.(2009) used a geometrical (projective) approach, not described in every 
detail but results show its efficiency albeit at the expense of high computational costs – this 
being improved by finally implementing the method in two steps.  

On our side a first study of self-shadowing was made by Clavier (1991) but was 
discontinued. A novel analysis was performed and algorithms were designed and 
implemented by Balmino  (2007). They were applied to planetary geodesy studies conducted 
since many years, and in particular in our efforts to model the gravity field of Mars and its 
seasonal variations (Marty et al., 2009). Their extensive use over the years makes them 
worthy of this article. The core of this paper is a detailed description of the algorithms - which 
requires many figures for clarity, their overall performance, followed by examples of data 
analysis from two Martian missions performed with the improved computation of surface 
forces.

2  SELF-SHADOWING IN THE CONTEXT OF ORBIT DETERMINATION 
The POD (precise orbit determination) software used in our satellite dynamics works and 
subsequent computation is GINS (Geodesie par Integrations Numeriques Simultanees), 
documented in Marty et al. (2011).  

Our strategy may differ significantly from others, in the sense that the method was 
developed from the beginning with the aim to compute exactly in GINS all geometrical 
elements and self-shadowing conditions at each time step of the numerical integration process 
of the POD,  once per epoch in the predictor phase of the integrator (we use the pseudo-
correction technique in the corrector, which consists in not recomputing some parts of the 
disturbing accelerations). No call to outside and predetermined results is necessary, which 
makes the method quite flexible especially in cases of highly mobile spacecraft parts. 

Figure 1 shows a spacecraft composed of several elements – some of them being mobile, 
in orbit around a given (central) body. Each element can be decomposed into, or 
approximated by several plates. The four main types of surface forces are atmospheric drag, 
direct solar radiation pressure, indirect solar radiation pressure (reflected by the central body 
and function of its albedo), and infrared radiation pressure (emitted by the central body). They 
result in perturbing accelerations which depend on physical models (e.g., density of the 
atmosphere), plate surface properties and characteristic vectors of these forces, respectively 

iasV ,,, (for a  and i we use mean directions not accounting for albedo or emissivity spatial 
variations). We assume that there is no self-shadowing for disturbing forces due to thermal 
effects on each element plate.  
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Our goal is to determine all along the orbit if any spacecraft element plate is in the shadow 
of another one with respect to each of the surface force characteristic vectors and, if so, to 
compute the reduced surface on which the force acts, the resulting accelerations applied to the 
plate being proportional to this surface.

Fig. 1. Spacecraft subject to surface forces. Each element is decomposed into flat plates. 
For each force the shadowing of each element plate by another one is determined by the 

occultation conditions in the direction of the characteristic vector of the force : iasV or,,, .

3 SPACECRAFT DECOMPOSITION INTO SURFACE ELEMENTS AND 
REFERENCE SYSTEMS 
The geometry of a spacecraft is usually approximated by a macro-model. Such a model may 
consist of a bus, one or several solar panels, an external antenna, which can be approximated 
by simple surfaces such as polyhedrons (limited by flat polygonal plates), parts of cylinders, 
cones, paraboloids, etc. 

Finite expressions exist for computing the surface forces acting on such elements, but 
taking into account self-shadowing makes these formulas useless in the case of curved 
surfaces; we decided to turn to a simpler approach in which each curved surface is 
approximated by a certain number of flat plates. Note that some of these plates must be 
considered twice (front and rear sides, with opposite normals)  to account properly for the 
action of the surface forces. 



4

With respect to the usual case (no self-shadowing) where it suffices to know the areas and 
orientations of the plates, we now need to define the coordinates of vertices of each plate in a 
given (local) reference system, for instance fixed to the bus, or linked to other spacecraft 
elements via intermediate reference frames. 

Appendix A provides these local coordinates for flat plates arising from the decomposition 
of most frequently encountered structural parts, and limited by convex polygons – convexity 
allows to use simpler and faster algorithms in the following. 

At this stage it is important to note that special cases of self-shadowing geometry (see 
section 4.3.1) will be quickly discriminated provided that any two surfaces cannot intersect - 
although they may have a common edge or their intersection may be inside one surface but 
outside the other (fig. 2). This may be checked at the macro-model definition level for fixed 
plates. For mobile parts we will apply some algorithms in assuming that the decomposition 
rule is not verified. 

Fig. 2. Decomposition rule: (a) two plates are allowed to share one edge (or part of it); (b) the 
intersection of Sn and Sm is inside Sm but outside Sn ; (c) Sn is decomposed into two sub-

surfaces. 

All computations are to be done in a reference system (r0) fixed with respect to the spacecraft 
main body P0 (the bus). The other parts Ps of the spacecraft are of two types. The fixed parts 
are also referenced to (r0), whereas the mobile parts are fixed in their own reference system 
(rs) = (Cs; xs,ys,zs), see figure 3, and (rs) is mobile with respect to (r0). A mobility index 
table Ms (0 or 1) is thus defined.

In the following, in order to avoid the use of two indices and thus to simplify notations, we 
will call Sj any plate resulting from the decomposition of a part Ps (s � 0) ; Sj is in the plane 
�j , it has the same mobility index as the part to which it belongs and is referred to the same 
system of coordinates. 
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Fig. 3. Example of spacecraft structure. P0 is the bus, with its reference system (r0). P1 and 
P2 are mobile parts, but fixed in their own reference system, (r1) and (r2) respectively. P3 is 

fixed in (r0). 

When Sj is fixed in (r0), i.e. Ms (j) = 0, the coordinates of its vertices are directly given in 
(r0). For further use, we then define the new reference frame (�j) = (O; uj,vj,wj) where O is 
the origin of (r0), vj is a unit vector parallel to A1A2 , wj = nj (the unit vector normal  to �j,
the orientation of which depends on the ordering of the vertices), and uj = vj x wj (see fig. 4a). 
This implies a transformation matrix t(Sj) such that, for any vector H we have: 

     H[�j] = t(Sj) H[r0] ,                         (1) 

where H[f] denotes the vector components in the reference frame (f). 

For a moving surface Sj, i.e. Ms (j) = 1, the coordinates of its polygon vertices are provided in 
(rj) = (Cj; xj,yj,zj) where the vector OCj is given in (r0) - see fig. 4b ; also given is the matrix 
Q j such that for any vector H:

    H[rj] = Q j H[r0]                       (2) 

In practice the (r0) and (rj) systems are independently related to the reference system (R0) in 
which the spacecraft orbit is defined, by two matrices P0 and Pj so that: H[r0] = P0 H[R0] and 
H[rj]  = Pj H[R0]. Therefore:  

   Q j = ������                                                                       (3) 

As before we define a system  (�j) = (Cj; uj,vj,wj), this time of origin Cj, and we have a matrix 
t(Sj) by which:

   H[�j] = t(Sj) H[rj]                                                               (4) 

and finally: 

   H[�j] = t(Sj) Q j H[r0]                                                         (5) 
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The (�j
*) system (see fig. 4c) is sometimes needed; it is translated from the (�j) system and 

has its origin �j  in the �j plane. All points in �j have the same coordinate w in (�j) and w* =
0 in (�j

*); furthermore u* = u and v* = v, so that {u, v} and {u*, v*} will be used 
synonymously.  

(a)

(b)

(c)

Fig. 4. The reference systems at stake:  (R0) is a reference system in which the orbit is given,   
(r0) is a system fixed in the spacecraft main part (the bus). (a) Case of a plate fixed in the (r0)
system ; (b) Case of a moving plate, but fixed in its own coordinate system (rj); (c) In both 
cases we also define the intermediate systems  (�j) and (�j

*).  



7

4 ALGORITHMS 

From now on S0 will be  any one of the Sj surfaces previously defined, and S will be another 
one. For any given vector � , characteristic of one of the non-gravitational forces, we want to 
determine if S0 is in the shadow of S, completely or partially (fig. 5). 

Fig. 5. Geometry of the general shadowing problem. The unit vector � is the point of view
direction, S' is the oblique projection of S on �0 (the plane of S0). All surfaces will be  

convex in the rest of the paper. 

The general problem is to determine S' = �
0�proj (S) : the oblique projection (parallel to � )

of S onto �0 , the plane of S0, and then  S0 � S'. In the present case this is simplified since 
the surfaces are convex polygons and we need only to compute the ratio area(S0 � S') / 
area(S0). 

4.1 Preliminary conditions 

It is easier in some cases, and especially for surfaces fixed in (r0), to firstly determine the 
permissible ranges of directions between two such surfaces for which shadowing may or may 
not occur. This accelerates the application of subsequent steps of the algorithms.  

To do so we construct a discretized bundle which consists of a set of vectors MM 0  where 
M0 and M belong to the edges of the polygons defining  S0 and S, respectively (fig. 6). The  
number of these vectors depends on the complexity of the polygons and has been empirically 
determined. Then the minimum and maximum values of the elevation (e) and azimuth (a) of 
the M0M vectors are used to discriminate the possible self-shadowing directions; there may be 
two sets of limiting values for the azimuth since it is counted in a 2� interval. 
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Fig. 6. The azimuth (a) and elevation (e) of MM 0   are computed for series of points  M0 and
M on the edges 	S0 and 	S, respectively, of the considered surfaces, here fixed in (r0).

4.2 Basic transformation: oblique projection 
The geometry of the transformation is depicted on figure 7. P being any point in space 

(subsequently it will be a vertex of S ) we want to determine P' = �
0�proj (P). P' may be 

defined by: 
�
�� PGPG 00 '

0 0' . 0 ,G P n �
����� ���

                                                                    (6) 

where 0n is normal to the plane �0 (oriented according to the S0 vertices order) and G0 is any 
point in �0 (for instance the isobarycentre of the S0 vertices). Multiplication of the first 
equation by 0n�  then yields


 �0 0 0 0. . / ( . ) ,OG n OP n n
 �� �
����� ��� ���� ��� ��� �

                             (7) 

in which the singularity �.( 0n = 0) is treated separately. 

 Fig. 7. Oblique projection parallel to the � direction. (�0) is the reference system (C0; u,v,w)
            attached to S0 ; G0 is fixed in the plane �0 and 0n is normal to it. 
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4.3 Algorithms of shadowing of S0 by S
Here we describe in detail the shadowing occurrence conditions: shadowing (sh), no 
shadowing (no-sh), and possible shadowing (p-sh). The p-sh and no-sh cases may be 
determined by simple preliminary tests, and the former (p-sh) requires further testing (in 4.3.2 
and 4.3.3) before sh can be confirmed and its precise effect computed. 

4.3.1 Preliminary discrimination 

We start by testing whether S is completely opposite to S0 with respect to � , in which case 
there is no shadowing. If the decomposition rule is satisfied  (shown before on figure 2) then 
it will be sufficient to consider the isobarycentre G of S and its image G' on �0 , the plane of 
S0 (fig. 8a), defined by

�
GGG �'       (8) 
� 
G > 0  : no-sh
� 
G < 0  : p-sh .

If this rule is not satisfied (frequent case of mobile parts), then a similar condition for all the 
vertices P of S must be tested, with �
PPP �'  : 

�  (�P) 
P > 0  : no-sh  (fig. 8a) 
�  (�P) 
P < 0  : p-sh,   (fig. 8b). 

Fig. 8. Preliminary tests. (a) no shadowing of S0 by S: test on G is sufficient if decomposition 
rule is satisfied; test on all vertices P required if not. (b) possible shadowing: test on   
isobarycentre or on all vertices depending on the case. The criteria are based on the sign of 
G
(or 
P).  

The intermediate case, when we have positive and negative 
P values (fig. 9a), requires to 
also test the direction of the 'QQ  vector for any vertex Q of S0 and its image Q' on � (the 
plane of S ), which verify: 

' ,QQQ � ��
����� �

        (9) 

and we note that all �Q values are here of the same sign. Then: 

(�Q) �Q > 0  : p-sh    (fig. 9b) 
(�Q) �Q < 0  : no-sh  (fig. 9c). 

As before the p-sh case will be further analysed. 
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Fig. 9. Preliminary tests : intermediate case (complementary to those of fig. 8a, b) of which
(a) shows the geometrical occurrence. (b) is a p-sh case. (c) is a no-sh case. 

4.3.2 Peculiar cases 

Once a p-sh condition is established some simple cases of sh and no-sh can be tested. For 
doing so we consider the (u,v) coordinates in the �0 plane, i.e. in ( *

0� ), of  the vertices A0,h

(u0,h,v0,h) of S0, and those of the vertices A'k (u'k, v'k), of S' (the image of S ).  Then: 

- S' completely outside S0  (no-sh), as shown on figure 10. There are two sub-cases:

(a) u'max < umin,0 or  u'min > umax,0 or  v'max < vmin,0 or  v'min > vmax,0 , where the min and 
max subscripts correspond to the minimum and maximum values of the 
coordinates u0, v0, u', v' to which they are appended; 

(b) the conditions of case (a) are not satisfied but all vertices of S' are outside S0 and
all vertices of S0 are also outside S': these conditions are verified by means of 
point-in-polygon (PIP) tests (see Appendix B) which are very simple (and fast) 
due to the convexity of the polygons. 
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Fig. 10. Simple cases of no-sh : (a) is tested by comparing the extreme values of the (u,v)  
coordinates of S0 and S'; (b) requires using a point-in-polygon algorithm. 

- S' completely inside S0 (fig. 11a): this is equivalent to all image points A'k of S'
being inside the S0 (A0,h) polygon, which is assessed by PIP testing.

- S0 totally covered by S' (fig. 11b): in this case (PIP-tested) all points A0,h are inside 
the S' polygon. 

Fig. 11. Other simple cases requiring PIP testing :. (a) S' is completely inside S0; (b) S0 is
totally inside S'.

4.3.3 General case: pixellation 

Here S0 � S' � � but the geometry is not as simple as on figure 11. Our approach, which 
does not make use of any specific library, is derived from some methods used in computer 
graphics to superimpose or intersect images. 

Firstly, and once for all, the surface S0 is discretized (pixellated) in the *
0�  (u,v) 

coordinate system in assuming that we have qmax pixels in the largest dimension (u, or v) and 
a proportional number in the other one; the pixels are in general rectangular - though closer to 
squares as qmax increases. With {umin,0; umax,0} and {vmin,0; vmax,0} being the extreme values of 
the S0 vertices coordinates as before, and with �u0 = umax,0 �  umin,0 , �v0 = vmax,0 �  vmin,0 we 
therefore define : 

- if �u0 � �v0 :   nu0 = qmax ,  nv0 = max[2,  nu0 . �v0/�u0]
- if �u0 < �v0 :   nv0 = qmax ,  nu0 = max[2,  nv0 . �u0/�v0].                  (10) 
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The rectangular envelope of S0 is thus discretized in nu0 . nv0 pixels Pij the centroids of which 
have coordinates, in matrix-analog form (see fig. 12):  

vi = vmax,0 �  (i-1/2) �v0 , (i = 1,2,… nv0)
   uj = umin,0  +  (j-1/2) �u0 ,  (j = 1,2,… nu0)                                    (11) 

with �u0 = �u0 / nu0 and �v0 = �v0 / nv0 . 

Fig. 12. General case: S0 is pixelated. The position with respect to S' (in or out) of the pixels
(�)  inside the part delineated by the green line, is tested by a PIP algorithm. 

The pixels inside S0 form a set {Pij
0}. The precision in the computation of the shadowed area 

goes like 1/ (qmax)2 at best (if �u0 � �v0) and 1/(2 qmax) at worst (if max[�u0/�v0 , �v0/�u0] �
qmax). This area is equal to the area of the pixels Pij

0 which are inside S', which is PIP-tested; 
the algorithm is further optimized by limiting the test to those pixels belonging to the 
intersection of the rectangular envelopes of S0 and of S', that is to: 

max [1, (vmax,0 � v'max)/ �v0] � i �  min [nv0 , (vmax,0 � v'min)/ �v0]
max [1, (u'min �  umin,0)/ �u0] � j �  min [nu0 , (u'max �  umin,0)/ �u0] .                         (12) 

with Pij �  {Pij
0} . The  PIP Jordan algorithm (see Appendix B) is always used at this stage. 

 For verification and graphic display an index matrix �ij may be associated to the Pij 's , the 
elements of which have the values: 

�ij = -1 if Pij �  {Pij
0}

�ij =  0  if Pij �  {Pij
0} but Pij � S'                 (13)

�ij =  1  if Pij �  {Pij
0} and Pij � S'.

When the shadowing possibilities  of S0 are analyzed for several surfaces S� simultaneously - 
the most frequent case, the last condition in (13) is replaced by:

�ij = K    if Pij �  {Pij
0} and  if Pij is occulted K times.                                               (13*)
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Figure 13 shows an example of such a case. 

Fig. 13. Example of shadowing of S0 by three surfaces. A �ij matrix is associated to each 
pixel symbol, with �ij(e) = -1, �ij(.) = 0,  and �ij(K) = K.

5 IMPLEMENTATION
We come back to the notations of section 3. For each surface Sj we assume that, from a 
preliminary analysis (in general based on the previous algorithms), we can  define a 
shadowing index array �(j,n,k) the values of which (1 or 0) tell us whether Sj may be 
shadowed or not by the other surfaces Sn (n � j) for any of the surface forces (k = 1 to 4). 

5.1 Preprocessing

We firstly verify that each surface Sj, defined by its vertices in the (rj), or (r0) system – 
according to the mobility index Ms(j) - is planar and convex. The normal to its plane is then 
computed, as well as the length of the sides, the coordinates of the polygon isobarycentre, and 
the area. We also compute the transformation matrix from (rj), or (r0), to (�j). Then the 
pixellation of (Sj) is performed if �(j,n,k) = 1 for at least one value of n and one value of k. 

5.2 Processing 
At each step of the numerical integration of the spacecraft orbit, we either keep all elements 
(scalar, vectorial) of each surface (Sj) as determined in the preprocessing (when Ms(j)=0), or 
update these elements when time varying (if Ms(j)=1).

Then we perform, in the (R0) reference system, the different tests detailed in section 4 for 
each couple of surface {Sj, Sn} and for each force (i.e. each characteristic vector � k , k = 1,… 
4) when �(j,n,k) = 1. The detection of peculiar cases is done first, then the general case 
algorithm is applied if necessary. 

6 EXAMPLE: POD OF TWO MARS ORBITERS
We reprocessed some deep space Doppler and range data from the NASA Mars Odyssey
(ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, in orbit around planet Mars 
since 2002 and 2006, respectively. Such data had already been used together with those of the 
Mars Global Surveyor mission in order to determine a gravitational field model (MGGM08A) 
of Mars in spherical harmonics – its mean (static) part and the time variations of the first 
zonal coefficients (Marty et al., 2009). At that time we had put the emphasis on the scientific 
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results; we here want to give more details on the POD self-shadowing effects and on the 
performances of our approach. 

6.1 Spacecraft macro model 
All geometrical and optical properties and the information about the position of movable parts 
were obtained from the project teams at the Jet Propulsion Laboratory and at Goddard Space 
Flight Center.

We restrict the description to the ODY case. The MRO spacecraft model is similar though 
more complex with two mobile solar panels and a larger antenna. The ODY spacecraft 
consists of three main parts (fig. 14): the bus, one mobile solar array and the mobile high gain 
antenna; the Gamma sensor head, at the end of a long boom, is here neglected. The bus 
consists of six rectangular faces, the solar panel is one rectangle – counted twice (front and 
rear sides) and the antenna is here sufficiently flat to be approximated by a disc (thus a regular 
polygon) with two faces also. The areas of these elements are given in table1, the coordinates 
of the vertices and other reference system quantities are of course introduced in the data base, 
together with parameters (specular and diffuse coefficients) which characterize the surface 
physical properties. 

Fig. 14.  The Mars Odyssey spacecraft and its modelling. In (a) are shown the Gamma sensor 
head and its boom which are omitted in the box-wing-antenna simplified model shown in (b).
Table 1. Areas of the different components of the modelled Odyssey spacecraft 

Solar panel Bus Antenna 
Front (1) and  rear (2) sides Faces 3 and 4 Faces 5 and 6 Faces 7 and 8 Faces 9 and 10 

11 m2 3 m2 2.5 m2 3.6 m2 1.8 m2

The spacecraft operates on a sun-synchronous orbit (inclination 93.1°) with a periapsis frozen 
near the south pole at about 390 km altitude, the eccentricity is very small (~ 0.01). The 
orientation of the orbiter is such that the solar panel remains almost edge-on along the 
velocity (cf. fig. 14); as a consequence the self-shadowing effect is quite small for the drag as 
shown on figure 15 (top) where we have plotted the projection of the spacecraft elements on a 
plane orthogonal to the velocity vector for several positions along an orbit. 
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Fig. 15.  Mars Odyssey spacecraft viewed from the velocity vector end (top), from the sun  
(middle) and from the nadir (bottom) for typical geometries over one orbit. The last case does 

not exhibit significant variations. 

The situation looks different for the self-shadowing associated with the direct solar radiation 
pressure where the spacecraft parts occult one another significantly - depending of the sun 
position in a Martian year (fig. 15, middle). In the case of the albedo and infrared radiation 
pressure effects, the geometry is such that the antenna is always shadowed by the bus (fig.15, 
bottom). These have consequences on the surface force coefficients which are adjusted in the 
course of the POD as will be shown hereafter. 

6.2 POD characteristics 
The orbit data were obtained from the project teams; they are currently available from the 
Planetary Data System of NASA. They consist of two and three-way  ramped Doppler and 
also two-way range measurements,  all in X band and acquired by the NASA Deep Space 
Network (DSN) stations at the three sites of Goldstone, Madrid and Canberra. The averaging 
time for the Doppler data is 10 seconds over the selected period. These observations are 
processed in arcs of approximately four days duration each. 

Corrections to the measurements include: the tropospheric delay which makes use of the 
meteorological data collected every half-hour at the DSN sites (or coming from 6-h grids of 
solar radiation pressure, temperature and humidity provided by the European Centre for 
Medium-range Weather Forecasts, ECMWF), antenna offset (which is peculiar to each 
spacecraft and may depend on the mission phase), time offsets at the DSN stations. The 
observables are processed according to Moyer (2000), in taking into account the precise 
transformation between coordinate time (the time scale of the dynamics) and atomic time (at 
the stations), and the relativistic effects. 

The POD and the retrieval of the physical parameters (such as the gravity field spherical 
harmonic coefficients – not discussed here)  are based on a full dynamical approach using the 
numerical integration of the equations of motion (and associated variational equations) 
combined with a least squares adjustment of the unknowns which enter in the linearized 
observation equations. 

The orbit dynamic modelling characteristics are summarized in table 2. In addition to 
these, one must model the angular momentum desaturation (AMD) events to which the 
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spacecraft is subject from time to time for its attitude control (according to information 
provided by the project teams). 

We solve for the following parameters: 
      - the state vector components at epoch (beginning) for each arc; 
      - empirical multiplying factors, FD , for the drag acceleration (one per 24 hours)   
        accounting for the Drag Temperature Model (DTM) imperfections; 
      - empirical multiplying factors, FS(d, a, IR), for the radiation pressures (one per arc): direct,
        indirect (due to Mars albedo)  and infrared; 
      - empirical accelerations  at the AMD epochs: a vector with a priori uncertainties of   
        10-5 ms-2 per component (based on information about the AMD events strength); 
      - one bias per DSN station and per arc for all measurement types; 

Due to correlations which are often high between some of these parameters - and lack of 
observability in some instances, a priori variances are input (as additional equations in the 
least squares procedure) to stabilize the inversion; this is especially critical for the AMD 
empirical accelerations which may impact the consistency of the solution. 

Table 2.  POD dynamic parameterization 

Ref. Syst./Ephemeris/Forces Description Reference

Fixed reference system (R0)
J2000 Mars mean equator (MME2000), 
X-axis: ascending node of MME2000 on 
Earth mean equator of  J2000 

Seidelmann et al., 
2002 

Martian rotation 
Precession Konopliv et al., 2006 
Nutations Folkner et al., 1997 
Prime meridian: IAU 2000 conventions Seidelmann et al., 

2002 

Earth
Earth rotation and polar motion IERS, 2010 
Solid and ocean tide loading effects 
Atmosphere loading effect (6-h radiation 
pressure grids from ECMWF) 

Gegout, personal     
              comm., 1996 

Relativistic formulation Parameterized post-Newtonian (PPN) Moyer, 2000 
Mars gravitational field MGGM08A Marty et al., 2009 
3rd body attraction Sun, Moon, Planets: DE430 Folkner et al., 2014 

Phobos, Deimos: dedicated ephemeris Lainey et al., 2007 
Solid tide attraction With Love number k2 = 0.12 Marty et al., 2009 

Surface forces 
(with or without self-shadowing)

Atmosphere: Drag Temperature Model 
(Mars DTM) 

Bruinsma and  
           Lemoine, 2002

Direct solar radiation pressure Marty et al., 2011 
Reflected solar + infrared radiation 
pressures 

Lemoine, 1992 

6.3  Performances 
We have processed the same ODY arcs two times: once with the self-shadowing (S-SH) "on" 
for all surface forces, and once with no S-SH at all. The arcs are one day long, numerical 
integration is done with a step-size fixed to 20 seconds, which implies 4320 calls per arc and 
per iteration to the S-SH computing functions in the software.

The value of the qmax parameter (introduced in section 4.3.3) which quantifies the 
pixellation resolution is quite important since it drives a large part of the extra computing time 
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CT. With complete parameterized force models as in table 2, the CT increase for the S-SH 
“on” case varies between 16 % and 90 % for values of qmax between 13 and 50, see table 3.  
The extreme cases, qmax = 13 and qmax = 50 correspond to a decomposition of each surface 
elements into a maximum of 169 and 2500 pixels, respectively. Comparing the results from 
the different tests, neither the observation residuals nor the orbits show significant differences 
(above the noise level). A more decisive criterion would lie in the drag and solar pressure 
coefficients: in our example they do not show significant variations (they are below, or much 
below 1 %). Therefore the smallest value of qmax may be chosen, which makes the problem 
very tractable. Of course such a value must be adapted to a given spacecraft and orbit 
characteristics by preliminary tests.  

Table 3.  Effect of the qmax value on the computer time (CT), in percent of the total CT. 

qmax relative CT increase 
13 16 
25 30 
50 90 

Note that these tests have been conducted by assuming mean characteristic directions for the 
indirect solar radiation pressure and thermal emission. This is a rough simplification in 
particular in the case of the indirect solar pressure. But we considered that this assumption 
was, for the time being, good enough for our applications in view of other physical model 
uncertainties. Using a more accurate modeling of albedo and thermal emission would increase 
the total CT and drive the relative CT increases in table 3 smaller. 

6.4  Effects on the accelerations

To analyze the effect of the self-shadowing on the orbit extrapolation we show in figure 16 
the acceleration differences (with and without self-shadowing) for drag, direct solar radiation 
pressure and albedo for ODY and MRO. The infrared radiation pressure effect is very small 
(about one percent of the albedo) and has been omitted in these tests. 

Fig. 16.  Accelerations changes (m.s-2) due to self-shadowing for the MRO (left) and ODY   
(right) orbiters, for drag [top], direct solar radiation pressure [middle] and albedo [bottom].
Starting epoch is 2003-08-22 for MRO and 2007-02-05 for ODY. 
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The patterns are different for MRO and ODY because of the more complex geometry of 
MRO, especially its two solar panels instead of one for ODY. The amplitude of the self-
shadowing effect on drag is larger for MRO than for ODY because its altitude is lower, the 
drag force being three to four times larger in the present case; it is also larger for the solar 
radiation pressure due to the two panels and to the spacecraft attitude. The maximum effect of 
the self-shadowing is given in table 4, in percent of the accelerations themselves. 

Table 4. Maximum relative effects (acceleration) of the self-shadowing on the ODY and   
MRO spacecraft over one day, in percent. 

 ODY MRO 
Drag 6 12 

Solar radiation pressure 9 25 
Albedo 4 5 

6.5   Effects on the adjusted drag and solar radiation pressure coefficients, and on the 
orbit
We finally use the self-shadowing model in orbit adjustment, solving for all parameters as 
listed in section 6.2, that is including drag and solar radiation pressure empirical factors FD
(one per day) and FS (one per arc). These coefficients should be close to 1 if the drag and 
solar radiation pressure effects were precisely represented by the force models. Table 5 shows 
their mean values computed over 25 arcs of MRO and ODY. The use of self-shadowing 
models makes the FD and FS closer to 1 in all cases and especially for solar radiation pressure. 
For drag the thermosphere model is not precise enough to obtain coefficients much closer to 
one, though some improvement can be seen.  

Table 5.  Mean drag and solar radiation pressure coefficients computed for 25 arcs (100 days) 
of Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO), starting  2002-09-09 and 
2007-01-03 respectively.

 ODY MRO 
Self-shadowing FD FS FD FS

No 0.74 +/- 0.20 0.94 +/- 0.08 0.79 +/- 0.08 0.77 +/- 0.12 
Yes 1.21 +/- 0.15 1.01 +/- 0.08 0.88 +/- 0.08 0.95 +/- 0.11 

The Doppler residual changes are not significant (less than 10-6 Hz, compared to ~2 mHz 
residuals r.m.s.). However the orbit differences (3-D) amount to 1.5 m and 10 m typically  for 
ODY and MRO, respectively, and they are mostly in the tangential and normal directions; 
they originate from self-shadowing-induced variations of the non-gravitational accelerations 
which cannot be captured by scaling factors. Figure 17 is an example of such differences over 
one arc for MRO and ODY. It shows that the differences in the radial direction are indeed one 
to two orders of magnitude smaller than in the other directions. These orbit differences remain 
at the current POD level for such planetary orbiters. They are larger, though, in the MRO case 
which is very likely due to its sensitivity to drag: it is much higher than for ODY because of  
its lower orbit (altitudes of periapsis-apoapsis are 250-320 km for MRO, whereas ODY orbit 
is almost circular at 400 km altitude).  
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Fig. 17.  Orbit differences (r.m.s. values, in meter) between POD with self-shadowing and
POD without it, for the MRO (left) and ODY (right) orbiters, over a three day arc. Starting 

epoch is 2003-07-19 for MRO and 2007-02-05 for ODY. 

7 CONCLUSION 
We have developed a novel approach to model the self-shadowing effects on the surface 
forces acting on any spacecraft decomposed into elementary convex planar surfaces, fixed or 
mobile with respect to each other. The algorithms use elementary geometry and ray-casting 
techniques. They perform very efficiently in precise orbit determination based on numerical 
integration. Tests have been done with two Mars orbiters, which demonstrate our ability to 
use them routinely in planetary geodesy when highest precision is desired. 

Acknowledgments 
This study was performed at the French Space Agency (CNES) in Toulouse and supported by 
internal funds. We thank the reviewers for their careful analysis of the paper, thanks to which 
the final version was improved.

REFERENCES
Balmino, G. (2007), Auto-ombrage & occultation d’un satellite dans le calcul des forces de  

surface, Tutorial, C.N.E.S. (revised 2009), 1-44. 

Bruinsma, S., and F. G. Lemoine (2002), A preliminary semi-empirical thermosphere model 
of Mars: DTM-Mars, J. Geophys. Res., 107(E10), doi:10.1029/2001JE001508. 

Clavier, C. (1991), Modelisation des forces de surface sur un satellite artificiel, Technical  
report, C.N.E.S.

Folkner, W.M., R.D. Kahn, R.A. Preston, C.F. Yoder, E.M. Standish, J.G. Williams,  C.D. 
Edwards, R.W. Hellings, T.M. Eubanks, and B.G. Bills (1997), Mars Dynamics  from 
Earth-based trackingof the Mars Pathfinder lander, J. Geophys. Res. 102, 4057-4064. 

Folkner W.M., Williams J.G., Boggs D.H.,  Park R.S., and Kuchynka P. (2014),The Planetary 
and Lunar Ephemerides DE430 and DE431, IPN Progress Report 42-196. 

Gegout P. (1996), personal comm.



20

IERS  Conventions (2010), Gérard Petit and Brian Luzum (eds.). IERS Technical Note 36,
Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. 179 pp., 
ISBN 3-89888-989-6. 

Jordan, M.C. (1887), Cours d'analyse, Tome 3, Ecole Polytechnique, Gauthiers-Villars Ed., 
Paris.

Konopliv, A.S. C.F. Yoder, E.M. Standish, D-N. Yuan, and W.L. Sjogren (2006), A global 
solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos 
masses, and Mars ephemeris, Icarus 182, 23-50. 

Konopliv, A.S., S.W. Asmar, W.M. Folkner, O. Karatekin, D.C. Nunes, S.E. Smrekar, C.F.  
Yoder, M. Zuber (2011), Mars high resolution gravity fields from MRO, Mars seasonal  
gravity, and other dynamical parameters, Icarus, Vol. 211, Issue 1, 401-428. 

Lainey, V., V. Dehant, M. Pätzold (2007), First numerical ephemerides of the two Martian 
moons. Astronom. Astrophys. 463 (3), 1075-1084. 

Lemoine, F.G. (1992), Mars: The dynamics of orbiting satellites and gravity model 
development, Ph.D. thesis, Univ. of Colorado, Boulder, CO. 

Marty, J.C., G. Balmino,  P. Rosenblatt, J. Duron, S. LeMaistre, A. Rivoldini, V. Dehant, T. 
Van Hoolst (2009), Martian gravity field model and its time variations from MGS and  
Odyssey data, Plan. & Space Sci., 57, 350-363. 

Marty, J.C., S. Loyer, F. Perosanz, F. Mercier, G. Bracher, B. Legresy, L. Portier, H. 
Capdeville, F. Fund, J.M. Lemoine, R. Biancale (2011), GINS : the CNES/GRGS GNSS  
scientific software, 3rd  International Colloquium Scientific and Fundamental Aspects of  
the Galileo Programme, 31 Aug.-2 Sept. 2011, Copenhagen, Denmark. ESA Proceedings  
WPP326.

Mazarico, E.M. (2008), Study of the Martian upper atmosphere using radio tracking data,  
PhD thesis, MIT, pp. 1-268. 

Mazarico, E.M., M.T. Zuber, F.G. Lemoine, D.E. Smith (2009), Effects of Self-Shadowing on
Nonconservative Force Modeling for Mars Orbiting Spacecraft. J. Spacecraft Rockets, 
Vol. 46, No. 3, pp. 662-669. 

Moyer, T. D. (2000), Formulation for observed and computed values of Deep Space Network 
data types for navigation, Monograph 2, Deep Space Communications and Navigation 
series.

Salomon, K.B. (1978), An efficient point-in-polygon algorithm, Computers & Geosciences,
Vol. 4, no. 2, pp. 173–175.

Seidelmann, P. K., V. K. Abalakin, M. Bursa, M. E. Davies, C. De Bergh, J. H. Lieske, J. 
Oberst, J. L. Simon, E. M. Standish, P. Stooke, and P. C. Thomas (2002), Report of the   
IAU/IAG Working Group on cartographic coordinates and rotational elements of the 
planets and satellites: 2000, Celest. Mech. Dyn. Astron., 82, pp. 83-111. 

Ziebart, M. (2001), High Precision Analytical Solar Radiation Pressure Modelling for GNSS  
Spacecraft. PhD thesis, University of East London.

Ziebart, M., S. Adhya, A. Sibthorpe, S. Edwards, and P. Cross (2005). Combined radiation 
pressure and thermal modelling of complex satellites: Algorithms and on-orbit tests,  
Advances in Space Research, 36(3):424-430. 



21

APPENDIX A
Polyhedral decomposition of spacecraft elements 

This appendix provides the formulas needed in the most frequent cases of decomposition of a 
spacecraft into flat elements, especially when approximating curved surfaces (cylinder, cone, 
paraboloid) by plates. 

A1. Bus represented as an irregular polyhedron with lateral four-sided faces  
The bus has two polygonal faces with N edges, and N lateral faces each with 4 edges. This is 
exemplified on figure A1.  

Fig. A1. Spacecraft bus with N lateral four-sided faces and two polygonal faces. Left : general 
case; right : simple (usual) case: N= 4 (the quadrilateral faces need not be rectangular nor 

trapezoidal as suggested). 

Ai and Bi being associated as shown, the k.th face (k=1 to N+2) has the following vertices: 

   . 1 � k � N   :    [ Ak , Bk , Bmod(k,N)+1, Amod(k,N)+1 ] 
   .  k = N+1    :    [ A1 , A2    , … , AN ] 
   .  k = N+2    :    [ BN , BN-1 , …  , B1 ] .

This ordering ensures that a normal vector computed from any three points taken cyclically 
from one of the above sequences is indeed the outward normal to the associated face.   

A2. Approximation of cylinders and cones
These surfaces may be viewed as peculiar cases of the above, where N is chosen according to 
the desired degree of approximation, with the two polygonal faces being regular polygons: (i) 
equal in the case of the cylinder, and (ii) one being reduced to a point in the conical case (fig. 
A2)
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                   Fig. A2. Cylinder and cone in a macro-model, approximated by flat plates. 

We consider the usual case of a circular cylinder or cone. In a coordinate system defined by 
the cylinder axis and its geometrical centre, or by the cone axis and the centre of the base) we 
have:

-   for the cylinder: 

                       .  Ak  :  { xk = R cos [2(k-1)� / N] ; yk = R sin  [2(k-1)� / N] ; zk = h / 2 } 
                       .  Bk  :  { xk = R cos [2(k-1)� / N] ; yk = R sin  [2(k-1)� / N] ; zk = – h / 2 } 
       . Area of the polygonal upper and lower faces = N/2 R2 sin 2�/N
       . Area of each lateral plate = 2 R h sin �/N

-   for the cone: 

                       . S    :  { xS = 0 ; yS = 0 ; zS = h } 
                       . Ak  :  { xk = R cos [2(k-1)� / N] ; yk = R sin  [2(k-1)� / N] ; zk = 0 } 
      . Area of the polygonal lower face (base) = N/2 R2 sin 2�/N
       . Area of each lateral plate = R [ h2 + R2 cos2 �/N]1/2 sin �/N

A3. Approximation of a parabolic antenna
High gain antennas on planetary probes and orbiters usually have a significant size and must 
be modelled accurately for computing the surface forces. By nature they are paraboloids of 
revolution with the emitting/receiving electronics located at the focus of the surface (phase 
centre). They may be opened to free space, or closed by a conical surface centred on the focus 
(fig. A3). 
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Fig. A3. Parabolic antenna surface approximated by flat plates. One has 0 < r � �/2. A conical 
cover (shown on the right) may be added. 

The paraboloid may be approximated by a bottom polygonal plate (at local coordinate z0
which is function of radius r) with N edges, and N lateral trapezoidal plates, supplemented – 
when there is a cone covering the antenna, by: 

- either an upper plate (numbered N+1) approximating the cone if it is very flat (i.e. when 
�  > 2 � ) :  this is the polygon A1, A2,… AN,

   -    or N plates approximating it when � � 2 � ; these are the triangles { F Ak A mod(k,N)+1 }
         (k = 1,2,…N). 

The coordinates of the involved vertices are:

                  . Ak  :  { xk = � cos [2(k-1)� / N] ; yk = � sin [2(k-1)� / N] ; zk = �  } 
                  . Bk  :  { xk = r cos [2(k-1)� / N] ; yk = r sin  [2(k-1)� / N] ; zk = z0 = r2� / �2 } 
  . Area of the polygonal lower face = N/2 r2 sin 2�/N
  . Area of each lateral plate = h (� + r) sin �/N, h being the height of
                             trapeziums like A1A2B2B1: h2 = (�-r)2 cos2�/N + �2 (1-r2 / �2) 2

In some cases the whole antenna may be viewed as a flat disc, approximated by a regular 
polygon.

A4. Area of a convex polygon of N vertices
The area AN can be obtained by summing up the areas of N-2 triangles of common vertex A1
(for instance), that is (see Fig. A4): 

with: ak = A1Ak-1  , bk  =  Ak-1 Ak  , ck  =  AkA1

and: pk = (ak + bk + ck)/2 .

Alternatively if  (ui, vi) are the rectangular coordinates of Ai in any reference system in the 
polygon plane, then we can apply Gauss (or shoelace) formula: 

�  
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         with j = mod(i,N) + 1 . 

Fig. A4. Area of a convex polygon by triangular decomposition 

APPENDIX B 
Point-in-polygon (PIP) algorithms 

The PIP problem is a particular case of determining whether a point P0 is inside or outside a 
compact � of R2. There are basically two classes of methods which solve this problem: 

(i) those belonging to the winding number concept, which may be derived from 
Cauchy integral formula, and 

(ii) those belonging to ray casting techniques. 

B1. Cauchy type algorithms

Fig. B1. Geometry for  the algorithms derived from Cauchy integral. Left : for any curve 
limiting a compact � ; right : for a polygon. 

Let " + be the boundary (	�) of �, oriented clockwise (fig. B1).

In the complex plane z = u + i v, Cauchy’s integral formula is:  
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w(P0) is called the winding number of  " + around P0. For a general (closed) curve it is an 
integer (or an integer plus ½) representing the total number of times that curve travels 
counter-clockwise around the point; the winding number depends on the orientation of the 
curve, and is negative if the curve travels around the point clockwise. Here it is a peculiar case 
since " + is a simple curve (it makes only one loop).  

If 	� is the polygon P1P2…PN ,  then: 

# $1
20

1

1( ) 0 1     according to the same cases,
2

N

k
k

w P %
� �

� � � & &!

(the sign depends on the orientation of the polygonal line) where we have: 

where

(algebraic value of the cross product, i.e. the 

value of the determinant of the two vectors). 

In the above we assume that PN+1 ' P1.

This is a costly algorithm when directly applied like above. It can be simplified by 
tracking through which quadrants the polygon winds, as it turns around the test point, which 
makes the winding number algorithm comparable in speed to methods of class (ii) – see 
below. It can be further simplified if the polygon is convex (which is always the case in the 
present study); it is easy to see that: 

   - if P0 is outside the polygon : (( k) sign D[ P0, Pk, Pmod(k,N)+1 ] = - sign D[ P1, P2, P3 ] , 
   - if P0 is   inside the polygon : (� k) sign D[ P0, Pk, Pmod(k,N)+1 ] = sign D[ P1, P2, P3 ] , 

where for any three points A, B, C : ACABA,B,C )�][D  is the value of a 3x3 determinant. 

This the vector form of the winding number algorithm. 

B2. Ray casting algorithms 
Ray casting is a peculiar, and faster version of the ray tracing algorithm. The basis is a 
theorem by Jordan (1887) which applies to a compact � of R2 (see fig. B2). If � is any 
oriented straight line passing through P0 with an arbitrary origin and if the intersecting points  
A1, A2, …Am with the boundary " of � are ordered according to increasing abscissas, then: 

   . m is even, 
   . any point outside [A1 Am]  is outside �,
   . for a point A in [A1 Am] there exists p � 1 such that: either A � [A2p-1 A2p] and A is inside

�, or A � [A2p A2p+1] and A is outside �.
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Fig. B2. Geometry of the 1887 Jordan theorem. 

From this we derive the crossing number algorithm. For a simple polygon we count the 
number n of boundary crossings by a ray starting from the point P0 and going in any direction. 
If P0 is not on the boundary, n is even if the point is outside, and it is odd if P0 is inside. This 
is also known as the even-odd rule algorithm, which is extremely simplified when � is 
convex since m and n are equal to 2 at most. In practice we take a ray parallel to an axis of 
coordinates and directed towards the positive values for instance.  

A variant of it (for polygons), sometimes called the dual crossing number algorithm and 
introduced by Salomon (1978) makes use of the projections of the polygon edges on a straight 
line (L) which is entirely outside the polygon. The edges which are parallel to the direction of 
projection (�� ) are ignored; the bands are numbered as shown in figure B3 (there are less 
bands than edges), and for each band the segments (pieces of edges) are ordered according to 
the projection direction (from left to right on fig. B3). Then we take the ray starting from the 
point P0, parallel to ��  -  going towards (L); if j is the index of the first intersected segment 
then: { j even } 0 { P0 inside � }. This  algorithm requires a pre-processing phase of the 
polygon but it is then very fast.

                            Fig. B3. Example showing how the Salomon (1978) algorithm works. 
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B3. Which one to choose ? 
Our criteria has been the computing speed. Algorithms have been programmed in Fortran 90. 
Tests have been conducted (on PC) with various types of polygons, convex or not, and by 
varying the number of edges/vertices (N) and number of tested points (n0). For convex 
polygons the winding number algorithm (in its vector form) and the Jordan algorithm are 
equivalent. Independently from the polygon type, we found that the efficiency of the Jordan 
algorithm vs. Salomon’s method depends on the ratio 1 = n0 / N; for moderate 1 (~1 to 50)  
our codes perform equally; for large 1 (~1000 or larger) Jordan was found to be faster; in 
between, relative performances depend on the polygon complexity. Considering that macro-
model elements have a small number of edges and that we always work with (simple) convex 
polygons, we decided to use the Jordan algorithm in the POD software. However the 
Salomon’s algorithm was chosen for off-line studies of more complex surfaces.   
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