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ABSTRACT. This work presents short- and medium-term predictions of length of day (LOD) 
up to 500 days by means of extreme learning machine (ELM). The EOP C04 time-series with 
daily values from the International Earth Rotation and Reference Systems Service (IERS) serve 
as the data basis. The influences of the solid Earth and ocean tides and seasonal atmospheric 
variations are removed from the C04 series. The residuals are used for training of the ELM. The 
results of the prediction are compared with those from other prediction methods. The accuracy 
of the prediction is equal to or even better than that by other approaches. The most striking 
advantages of employing ELM instead of other algorithms are its noticeably reduced 
complexity and high computational efficiency. 

Keywords: Earth orientation parameters (EOP); length of day (LOD); predictions; artificial 
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1. INTRODUCTION 

Today, daily or even subdaily time-series of the Earth orientation parameters (EOP) are 
available with high accuracy from the International Earth Rotation and Reference Systems 
Service (IERS). The EOP are essential for many researches and applications in astronomy and 
geodesy since they provide the time-varying transformation between the celestial and terrestrial 
reference frames (CRF and TRF). Advanced space-geodetic techniques, e.g., Very Long 
Baseline Interferometry (VLBI), Global Navigation Satellite System (GNSS) and Satellite 
Laser Ranging (SLR), enable determination of the EOP with high accuracy up to 5-10�s in the 
case of universal time (UT1-UTC) data and 50-100�as in the case of pole coordinates [Kalarus 
M. et al. 2010]. However, the EOP estimates cannot be published in real time due to the delay 
caused by computation procedures. Therefore, it is necessary to predict the EOP at least over a 
few days for many real-time applications including the tracking and navigation of 
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interplanetary spacecrafts. EOP predictions can also be valuable for geophysical studies on 
time scales ranging from a few hours to decades. 

Regularly generated EOP predictions are published by several national and international 
services, e.g., the IERS Rapid Service/Prediction Center (RS/PC) [Johnson T. et al. 2005], or 
the EOP Service of the Institute for Astronomy and Astrophysics (IAA) in Saint Petersburg, 
Russia [Malkin Z., Skurikhina E. 1996]. Nevertheless, all prediction algorithms should be 
continually improved since the prediction errors of UT1-UTC and pole coordinates even for a 
few days in the future are several times greater than their observational accuracy. Out of the five 
EOP, UT1–UTC or its first derivative, length of day (LOD), which represents the variations in 
the Earth’s rotation rate, are the most difficult to predict. Particularly the greatest difficulties in 
UT1-UTC or LOD predictions are owing to the occurrence of extremes in the LOD signal 
induced by the collapse of the tropical easterly winds during an EI Ni�o event [Gross RS. et al. 
1996]. Consequently, precise predictions of UT1-UTC or LOD are an ongoing challenge. This 
study focuses on LOD predictions. 

Up to now, various prediction methods and techniques have been developed to improve the 
prediction accuracy of LOD time-series, e.g., least-squares (LS) extrapolation of the harmonic 
model [Niedzielski T., Kosek W. 2008], autocovariance (AC) prediction [Koesk W. et al. 1998], 
autoregressive (AR) prediction [Niedzielski T., Kosek W. 2008], artificial neural networks 
(ANN) [Schuh H. et al. 2002], [Zhang XH. et al. 2012], fuzzy inference systems (FIS) 
[Akyilmaz O., Kutterer H. 2004], [Akyilmaz O., Kutterer H. 2005], fuzzy-wavelet [Akyilmaz 
O. et al. 2011] and combined solutions [Xu XQ. et al. 2012]. A list of most contemporary 
methods and their comparison can be found in [Kalarus M. et al. 2010]. Most of the prediction 
methodologies use a combined model consisting of the deterministic part, which is either 
known or estimated by means of the least-squares (LS) method, and of the part to be forecasted, 
which can be stochastic or non-stochastic. [Schuh H. et al. 2002], [Akyilmaz O., Kutterer H. 
2004], [Akyilmaz O., Kutterer H. 2005] and [Zhang XH. et al. 2012] have employed a 
combination of an a priori deterministic model and ANN so as to make a precise prediction of 
short- and long-term LOD. As a first step, parameters of an a priori model are estimated by the 
LS approach and the resulting residual time-series are used in ANN prediction. At the second 
step, the residuals forecasted by ANN are then added to the corresponding a priori model value 
to provide LOD for the respective day. The further discussed approach is similar to those as 
considered in [Schuh H. et al. 2002], [Akyilmaz O., Kutterer H. 2004], [Akyilmaz O., Kutterer 
H. 2005] and [Zhang XH. et al. 2012]. As usual, we first use, for LS extrapolation, an a prior 
model consisting of periodic effects such as the impacts of the solid Earth tides and the ocean 
tides on LOD and seasonal variations. Then we attempt to enhance near-term predictions by 
applying the extreme learning machine (ELM) to the residuals after subtracting the a prior 
model from actual LOD. This work concludes with a comparison of the new results and those 
obtained by other prediction methods and techniques. 

The ELM used here will be explained in Section 2. It is an efficient learning algorithm for 
single-hidden layer feed-forward neural networks (SLFN) proposed by [Huang GB. et al. 2004] 
and [Huang GB. et al. 2006]. In the ELM algorithm, the input weights (connecting the input 
layer and the hidden layer) and hidden layer biases are randomly chosen, and the output weights 
(linking the hidden layer to the output layer) are analytically determined by employing the 
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Moore–Penrose (MP) generalized inverse. The ELM not only learns much faster with higher 
generalization performance than traditional gradient-based learning algorithms like 
back-propagation neural networks (BPNN), but it also avoids many difficulties faced by 
gradient-based solutions such as stopping criteria, local minima and the over-tuned problems. 
Methods from the ELM have found numerous applications in different disciplines over the past 
few years and offer an alternative to conventional multi-hidden layer feed-forward neural 
networks (MLFN). 

2. EXTREME LEARNING MACHINE 

For N  arbitrary distinct samples ( , )i ix y , where T
1 2[ , , , ] n

i i i inx x x= ∈x R�  

and T
1 2[ , , , ] m

i i i imy y y= ∈y R� , if a standard SLFN with N�  hidden neurons and active 

function vectors ( )g x  can approximate these N  samples with zero errors, i.e., 

1
0

N

j jj=
− =� o y , where o  is the actual outputs of the SLFN, there exist i� , iw  and ib  such 

that 

1

( )
N

i i j i j
i

g b
=

⋅ + =� � w x y
�

, 1, 2, ,j N= � .                    (1) 

where T
1 2[ , , , ]i i i inw w w=w �  is the weight vector linking the i th hidden node to the input 

nodes, T
1 2[ , , , ]i i i imβ β β=� �  is the weight vector connecting the i th hidden node and the 

output nodes, and ib  is the threshold of the i th hidden neuron. i j⋅w x  denotes the inner product 

of iw  and jx .  

The above N  equations can be written compactly as 

                       =H� Y .                                (2) 

where 
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� � �

�

,              (3) 



22 
 

T
1

T
N N m×

� �
� �

= � �
� �
� �

�
�

� � �

�  and 

T
1

T
N N m×

� �
� �

= � �
� �� �

y

Y

y

�   .                      (4) 

H  is called the hidden layer output matrix of the neural network; the i th column of H  is the 

i th hidden neuron output with respect to inputs 1 2, , , Nx x x� . 

In the ELM solution, the input weights and hidden layer biases are randomly assigned 

instead of tuned. Thereby, the estimates of the output weights are as simple as finding the LS 

solution to the given linear system. The minimum norm LS solution to the linear system (1) is  

†ˆ .=� H Y                                 (5) 

where �̂  is used as the estimated value of �  and †H  is the Moore–Penrose generalized 

inverse of matrix H . The minimum norm LS solution is unique and has the smallest norm 

among all the LS solutions. 

The solving process of the ELM algorithm can be summarized as follows. 

(1) Give a training dataset ( , )i ix y , 1, 2, ,i N= �  and N�  hidden nodes. 

(2) Randomly assign threshold jb  and input weights jw , 1, 2, ,j N= �� . 

(3) Compute the hidden layer output matrix H . 

(4) Estimate the output weights †ˆ =� H Y . 

3. METHODOLOGY 

Daily time-series of LOD used in this work are collected from the IERS EOP 05 C04 series. As 
discussed in [Schuh H. et al. 2002], [Akyilmaz O., Kutterer H. 2004], [Akyilmaz O., Kutterer H. 
2005] and [Zhang XH. et al. 2012], the original LOD time-series should be reduced before 
training the neural network in order to avoid the error coming from the extrapolation problem. 
In this paper, a simple reduction procedure has been applied to the daily values of observed 
LOD time-series. After reduction of the original time-series by removing the a prior model, 
training patterns are formed out of the residuals. These patterns are employed for training the 
ELM network. The subsequently forecasted residuals are then added to the a prior model so as 
to gain the predicted values of LOD. 
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In the following section the generation of the a prior model, formation of the training 
patterns and building of the ELM model are described in detail. 

3.1. GENERATION OF THE A PRIOR MODEL 

The model of LOD contains several well-known components, such as the effects of zonal Earth 
tides with periods from 5 days up to 18.6 years, diurnal and semi-diurnal variations due to the 
ocean tides [Petit G., Luzum B. 2004], annual and semi-annual oscillations. In accordance with 
the above-described deterministic components of LOD data, we fit the function 

LOD 0 1( ) sin( ) sin( ) tidal termsa a a sa sa saf t a a t A t A tω ω= + + + Φ + + Φ + .     (6) 

where 2 / 365.24aω π=  and 2 /182.62saω π= , and bias ( 0a ) and drift ( 1a ) of the linear term, 

amplitudes ( aA , saA ) and phases ( aΦ , saΦ ) of the annual and semi-annual oscillations have to 

be estimated from the observations. 

The estimated deterministic model is subsequently used for two purposes: (1) to forecast 
the deterministic components of the signal (extrapolation) and (2) to obtain stochastic residuals 
(the difference between the data themselves and the deterministic model). The stepwise 
reduction of LOD in the time domain using the IERS EOP 05 C04 series is shown in Fig. 1. The 
amplitude of the residuals (plot (e)) is small in contrast with that of the original time-series (plot 
(a)). This indicates that the deterministic model represents the actual LOD time-series rather 
well. The derived stochastic residuals are used for training the neural network. 
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Fig. 1. The observed LOD (a), the solid Earth and ocean tide terms (b), a linear trend plus the 
seasonal variations including annual and semi-annual oscillations (c), the a prior model of LOD 

(d), and the stochastic residuals (e) 

3.2. FORMATION OF THE TRAINING PATTERNS 

After the LOD time-series have been reduced, the training patterns are generated. A first 
possibility is to utilize the variable time t  as the only input for feeding the network. However, 
[Schuh H. et al. 2002] had shown that using the time t  as the only input for feeding the network 
does not result in a precise prediction in the case of ANN. It turns out that the closer the 
observational data is near to the day to be forecasted, the greater impact on the prediction is, 
especially for LOD data which vary rapidly and unpredictably in time. Hence a more 
sophisticated strategy is to utilize previous values as inputs of the network and future values as 
outputs. In this contribution, a multitude of pattern pairs are formed as follows. 
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where X  and Y  are the pattern matrices, ( )tξ , 1, 2, ,t L= � , is the residual data, and the 

values of the residual time-series of the last five days are selected as inputs and the day to be 
forecasted is selected as output. This strategy is based both on theoretical considerations 
concerning the quasi-periodic and irregular variations in LOD residuals and on practical trials. 

After the neural network has been trained, the new input vector for the prediction of the 
first day into the future is formed as  

[ ]( 4), ( 3), ( 2), ( 1), ( )L L L L Lξ ξ ξ ξ ξ= − − − −x .                (9) 

and then are put into the network. The output will be ˆ( 1)y Lξ= + , where ˆ( 1)Lξ +  is the 

one-step-ahead prediction value. After the first day, the forecasted values are used as inputs in 
the already existing model composed for the first day’s prediction to compute the 
corresponding prediction values for the days 2, 3, � . No individual model has been composed 
for the prediction of each day after the first day since the prediction errors increase rapidly with 
a linear trend in the case of updating models. The inputs and output for the predictions of the 2nd, 
3rd, … days into the future are given below.   
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where d  represents the prediction horizon. 

3.3. MODEL BUILDING 

Next a neural network has to be designed and then built to provide predictions of the LOD 
residuals. In practice, the optimum network configuration relies on the composed training 
patterns, number of hidden neurons and type of activation function. The three factors have to be 
considered while trying to find the best network configuration. In this study, the patterns as 
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composed in the previous paragraph are utilized to train the network, and the sigmoid function 

is employed as activation function of ELM, that is, ( ) 1/ (1 )xg x e−= + .  

Actually, the optimum configuration solely depends on the number of hidden neurons, 
since the training patterns and type of activation function can be chosen in advance. In this work, 
in order to find the optimum number of hidden nodes and thus improve the generalization 
performance of ELM, the given training dataset are divided into two parts, one for training and 
the other for validation. Hidden neurons are generated k  times. Among k  ELM predictors, the 
predictor which yields the minimum validation errors is finally selected. A detailed description 
of the improved ELM algorithm is explained as follows. 

(1) Give the training dataset trainingℵ  and validation dataset validationℵ . 

(2) For 1:N k=�  

(a) Randomly designate parameters of hidden neurons ( N
jb
�
, N

jw
�
), 1, 2, ,j N= �� . 

(b) Compute the output matrix of the hidden layer on the training dataset trainingℵ : training
NH
�

. 

(c) Compute the output weights †
training training

ˆ N N=� H Y
� �

, where trainingY  is the target matrix of 

the training dataset trainingℵ . 

(d) Compute the validation errors validation validation
ˆN N N= −E H � Y

� � �
, where validationY  and 

validation
NH
�

 is the target output matrix of the validation dataset validationℵ  and the hidden 

layer’s output matrix on the dataset validationℵ , respectively. 

end for. 

(3) Let { }1
min N

N k
N N∗

≤ ≤
= E

�

�
� � . Set N ∗�  and ( N

jb
�

, N
jw
�

) as the optimum number and 

parameters of hidden neurons, respectively. 

In this study, k  is set as 50. 

4. PREDICTION RESULTS AND COMPARISON WITH OTHER METHODS 

Daily time-series of the IERS EOP 05 C04 series, which span the time interval from 1/1/1990 to 
31/12/2001, are used for modeling and evaluation. The whole dataset is split up into two parts 
in such a way that the time-series from 1/1/1990 to 31/12/1999 are employed for network 
training and the remaining part between 1/1/2000 and 31/12/2001 for the model assessment. 
The training patterns as described in the previous paragraph have been composed, and then 
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used to train the network. Note that it is very important to divide the training dataset into two 
segments during the network training. Herein the chronologically first 90% shape the training 
dataset and the remaining 10% represent the validation dataset. After the network has been 
trained, the well-trained network model is used to produce a predicted set of residuals for the 
future 1~360 days. Then the resulting forecasted value of the residuals for any particular day is 
added to the corresponding value of the a prior model to obtain the actual prediction value of 
LOD. The results of the ELM prediction are compared with those of BPNN [Schuh H. et al. 
2002], modified BPNN [Zhang XH. et al. 2012], general regression neural networks (GRNN) 
[Zhang XH. et al. 2012] and FIS [Akyilmaz O., Kutterer H. 2004], [Akyilmaz O., Kutterer H. 
2005] which had performed equally or even better than former methods (Table 1). The error 
measure is calculated according to [Schuh H. et al. 2002] as 

2

1

1 ˆ( )
p

i i
d d d

i

RMS l l
p =

= −� .                        (11) 

where ˆi
dl  is the forecasted value of the ELM network for day d , i

dl  is the actual value of the 

IERS C04 series, and p  is the number of predictions made for the respective day. 

Approximately 365 predictions starting at different days are made for each day to calculate the 

RMS errors, i.e. 365p = . 
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Table 1. Comparison of ELM, BPNN, modified BPNN, GRNN and FIS RMS prediction errors 
(in units of ms). 

 Prediction day      ELM      BPNN      Modified BPNN      GRNN     FIS 

         1           0.027      0.019           0.027           0.037     0.017 

2           0.057      0.049           0.073           0.074     0.045 

3           0.078      0.074           0.093           0.097     0.067 

4           0.098      0.097           0.110           0.117     0.088 

5           0.110      0.121           0.131           0.134     0.115 

6           0.121      0.142           0.148           0.151     0.139 

7           0.131      0.159           0.162           0.164     0.153 

8           0.142      0.174           0.170           0.174     0.170 

9           0.151      0.184           0.176           0.179     0.182 

10           0.157      0.193           0.185           0.187     0.188 

15           0.179      0.246           0.221           0.204     0.251 

20           0.192      0.251           0.217           0.210     0.259 

25           0.198      0.249           0.215           0.211     0.267 

30           0.201      0.245           0.219           0.217     0.275 

60           0.222      0.292           0.219           0.222      — 

90           0.242      0.306           0.231           0.226   — 

120           0.238      0.314           0.229           0.226      — 

150           0.212      0.330           0.237           0.233      — 

180           0.217      0.361           0.234           0.234  0.296 

210           0.229      0.397           0.241           0.236      — 

240           0.232      0.377           0.236           0.236      — 

270           0.228      0.386           0.231           0.240     0.313 

300           0.227      0.402           0.249           0.247      — 

330           0.224      0.372           0.262           0.254      — 

360           0.232      0.347           0.245           0.250     0.303 
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In order to make the comparison illustrative, the RMS prediction errors obtained by 
different machine learning (ML) methods are shown in Fig. 2. As can be seen in Fig. 2 and 
Table 1, the RMS errors of the ELM prediction are smaller than that of other ML methods. Note 
that the RMS errors given there are obtained by testing the prediction algorithms over different 
prediction spans. Despite utilizing the same equation for computing the RMS error and the 
same LOD reference series (C04 of the IERS), this might have affected the results of the other 
authors. Thereby, it is not directly comparable with the other approaches. A final picture of the 
prediction performance of different methods could only be attained by a kind of contest where 
prediction period and evaluation strategy are clearly specified in advance. Fortunately, the EOP 
prediction comparison campaign (EOP PCC) lasting from October 2005 until February 2008 
provided an opportunity to compare the performance of different prediction methods and 
techniques directly. Therefore, we have carried out a comparison with the EOP PCC for the 
purpose of evaluating the prediction accuracy of the proposed method. The LOD time-series 
spanning the time interval from 30/9/1995 until 30/9/2005 are selected as the data base to 
forecast the LOD values for the future 1�500 days during the period from 1/10/2005 to 
28/2/2008 (the same prediction period as that of the EOP PCC). A graphical comparison of the 
ELM results with the EOP PCC regarding the mean-absolute-error (MAE) error measure is 
given in Fig. 3�5. The MAE error measure is calculated in agreement with the following 
equation. 

1

1 ˆ
p

i i
d d d

i

MAE l l
p =

= −� .                       (12) 

A list of participants who supported the LOD predictions during the EOP PCC can be 
found in [Kalarus M. et al. 2010]. What can be said with the information available from the 
comparison is that the MAE errors of the ultra short-term (up to 10 days) predictions by the 
ELM are larger than those by Kalman filter with AAM forecasts (top. 1) and LS+AR (top. 2), 
but remarkably smaller than those by other prediction methods and techniques. For the 
short-term (up to 30 days) predictions the accuracy of the ELM prediction is inferior to Kalman 
filter with AAM forecasts, which is the best presently available prediction method found in 
[Gross RS. et al. 1998]. In Fig. 5, it can be seen that the developed strategy can offer long-term 
predictions which are better than those of other methods and techniques, indicating that the 
presented algorithm has very good extrapolation performance. 
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Fig. 2. Comparison of the RMS prediction errors of different ML methods: (a) the short-term 

(up to 30 days) and medium-term (up to 360 days) predictions 
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Fig. 3. Comparison of the MAE errors of ultra short-term (up to 10 days) predictions by the 
ELM and EOP PCC 
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Fig. 4. Comparison of the MAE errors of short-term (up to 30 days) predictions by the ELM 
and EOP PCC 
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Fig. 5. Comparison of the MAE errors of medium-term (up to 500 days) predictions by the 
ELM and EOP PCC 

5. CONCLUSIONS 

The comparison of ELM-derived results with those from other approaches clearly demonstrates 
that ELM is a promising tool to predict LOD. Precise predictions for both the short- and 
medium-term are possible by employing a same network for each day of prediction. Although 
the predicted values are used as inputs for the next days to be predicted after the first day, the 
prediction errors do not increase rapidly. For long-term predictions, e.g., several and more years 
into the future, more input variables could be utilized in the ELM model because computer run 
time becomes a minor restriction. Nevertheless, this case is not considered in present work.  
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The comparison among different ML algorithms including BPNN, modified BPNN, GRNN, 
FIS and ELM regarding complexity and the resulting predictions is illustrative. Traditional 
ANN algorithms such as BPNN, GRNN provide a very good prediction but it is difficult to find 
the optimum network configuration. In addition, training of traditional ANN algorithms is 
time-consuming. According to our experience, training of those ANN algorithms takes much 
longer than that of ELM: training of ELM only takes several minutes, while training of 
two-hidden layer neural networks with five inputs may take hours or even days on the same 
computer used for ELM. As a future work, values of atmospheric and oceanic angular 
momentum (AAM and OAM) may be added into the ELM network so as to improve the 
prediction quality.  

A promising study can be the use of artificial intelligence (AI) algorithms for the 
determination of optimal number of hidden neurons, such as genetic algorithms (GA), particle 
swarm optimization (PSO). Additionally training patterns for different prediction days should 
be formed and compared in order to optimize the network solution. 
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