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ABSTRACT. The Modified Ambiguity Function Approach (MAFA) is a method of GNSS 
carrier phase processing. In this method, the functional model of the adjustment problem 
contains the conditions ensuring the "integerness" of the ambiguities. These conditions are 
expressed in the form of differentiable function. A prerequisite for obtaining the correct 
solution is a mechanism ensuring not only the "integerness" of the ambiguity but also
appropriate localization of the search space in the place where the ambiguities have correct 
values. One of such mechanisms is cascade adjustment, applying the linear combinations of 
the signals L1 and L2 with the integer coefficients and various wavelengths. This paper 
presents another, independent from the previous, approach to increase the efficiency of the 
MAFA method. It is based on the application of the integer decorrelation matrix to transform 
observation equations into equivalent, but better conditioned, observation equations. The 
transformation matrix is obtained in the well-known ambiguity variance-covariance matrix 
integer decorrelation process.
Keywords:GNSS data processing, ambiguity function, MAFA method. 

1. INTRODUCTION  
The main subject of this paper is an improved algorithm of the MAFA (Modified Ambiguity 
Function Approach) method, Cellmer et al. (2010), Cellmer (2011a), Cellmer (2011b), 
Cellmer et al. (2011). The MAFA algorithm takes into account the integer nature of the 
selected parameters without the necessity for the additional stage of the integer search. It is 
based on the Least-Squares Adjustment (LSA) algorithm with condition equations, in the 
functional model. In this paper, a new technique to improve the efficiency of the MAFA 
method is proposed. This technique exploits an integer decorrelation procedure. After 
transformation of the observation equations with an integer decorrelation matrix, a model of 
an adjustment problem turns into an equivalent model,although better conditioned. 
The next section presents the theoretical basis of the MAFA method. In the third section, the 
improvement of the efficiency using integer decorrelation procedure is proposed. The last part 
of the paper gives a numerical example and some conclusions.  
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2. MAFA METHOD  
The following simple form of the observation equation for double differenced (DD) carrier 
phase observable is assumed, Hofmann-Wellenhof  et.al. (2008), Leick  (2004), Teunissen 
(1998): 

1
cλΦ+v= ρ X NN , (1) 

where: 
      – DD carrier phase observable (in cycles) 
       – signal wave length 

v       – residual (measurement noise) 
Xc      – receiver coordinate vector 

(Xc)  – DD geometrical range 
N       – integer number of cycles (DD initial ambiguity) 

The nominal accuracy of the carrier phase measurement is about 0.01 cycle, Hofmann-
Wellenhof et al. (2008). Thus, the residual values should be much lower than half a cycle. 
Hence, taking into account the integer nature of the ambiguity parameter N, the equation (1) 
can be rewritten in the following form:  

. (2) 

or 

. (3) 

where round is a function of rounding to the nearest integer value. The residual (3) does not 
contain a term N. Nevertheless, it takes into account the integer nature of ambiguities.  The 
right side of the equation (3) can be expressed in the form of the following, differentiable and 
continuous function, Cellmer and Wielgosz, (2011): 

1 arcsin[sin( s)]for s s : cos( s) 0
round(s) s

1 arcsin[sin( s)]for s s : cos( s) 0

1 in[sin( s)]for s s : cos( s) 01 iarcsiarcsiarcsiin[siarcsi
round(s) s

11 arcsi11 s)]for s s : cos( s) 0arcsiin[siarcsiarcsiarcsi
, 

(4) 

where s is an auxiliary variable: 

. (5) 
Each of the DD carrier phase observations is linearized. After linearization, the general 
formula of the residual equations can be shown in the following form:

V= AX+ , (6) 
with: 
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1 1round 1 1round
 (8) 

where: 
V  – residual vector (n×1), 

1 1+v - round -1 1+v - round -1 round -

1 1v round - -1 1round - -1 -
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X  – parameter vector (increments to a prioricoordinates vector X0), 
A  – design matrix (n×3), 
∆  – misclosures vector (n ×1), 
 

The LS solution of the formula (6) is: 

X =  - (ATPA)-1ATP , (9) 

with P as the weight matrix. 

In order to assure the convergence of the computational process to the correct 
solution, different linear combinations (LC) of L1 and L2 GPS carrier phase observables with 
integer ambiguities and longer wavelengths are applied in the cascade adjustment (Jung and 
Enge, 2000). Table 1 presents the linear combinations used in the MAFA method, along with 
their wavelengths (Han and Rizos 1996; Cellmer et al., 2010). 

 

Table 1  Linear combinations of L1 and L2 signals with integer ambiguity 

LC  [m] 
-3L1 + 4L2 1.6281 
   L1 –   L2 0.8619 
   L1 0.1903 

 

The above linear combinations were chosen based on the analyses of the theoretical 
properties of these combinations, Han and Rizos (1996), Urquhart (2009), Cocard and Geiger 
(1992). The computations are performed successively for different LC in the order listed in 
Table 1, namely, starting from LC with the longest wavelength and finishing with L1 signal 
only. 

 

3. IMPROVEMENT OF THE EFFICIENCY USING THE DECORRELATION 
PROCEDURE 
The ambiguities N are usually strongly correlated. Hence, fixing one value of ambiguity 
through rounding value s in (5) to the nearest integer as in (2), has an impact on the rest of the 
ambiguities. Therefore, the correlation between ambiguities should be taken into account at 
rounding the right side of the equation (2). The alternative way of solving this problem can be 
transformation of the observation equations into the equivalent form but without correlation. 
This method is proposed here. 

Let us assume that Z is the integer decorrelation matrix, Chang X-W et.al. (2005), Glenn 
and Svedensen (2006), Jonge and Tiberius (1996), Liu et. al. (1999), Teunissen (1995): 

QNz = ZQNZT, (10) 

where: 
 QN – ambiguity covariance matrix 

QNz – diagonal transformed ambiguity covariance matrix.  
 

If Z is integer matrix then transformed ambiguity vector, NZ=ZN must be integer as well. 
By multiplying the equation (1) with Z, one can obtain a new equation with a new integer 
ambiguity vector Nz: 
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1
Z CZ ZZ

V (X ) N
Z

1
Z ZCV (X ) N1

CC(X , (11) 

The free term vector  is computed in this case as follows: 

Z Z ZZ Z
1 1roundZ Z
1 1round

Z ZZZ ZZ
, 

(12) 

Thus, the LS solution is obtained:  
1T T

Z Z Z ZX A PA A P
1

Z Z Z Z
TA PA A PT T
Z Z ZZ Z

1 T1
PT  (13) 

with: 

           AZ = ZA (14) 

There are many various methods of finding the decorrelation matrix Z, Hassibi A. and Boyd 
S. (1998), Jonge and Tiberius (1996), Liu L.T. et. al. (1999), Xu PL (2001). In any case, the 
ambiguity covariance matrix QN is required to find the matrix Z. The matrix QN can be 
evaluated on the basis of the system of observation equations (1) after linearization:  

V=AX+BN–L, (15) 
where: 

L – free term (observed minus computed) vector 
B – ambiguity functional model matrix 

The covariance matrix of the unknown vector X  =[X, N]T can be presented as: 
1T T

X XN
x T T

NX N

Q QA PA A PB
C

Q QB PA B PB

1T TA PA A PBT T 1
Q QQA PA A PB XNQ QXA PA A PB QX XNXQXQX

NQQQT TT T Q QQ QT TB PA B PBT TT T
NXQ QNXQ QQ Q , (16) 

where: 
11T T T T

NQ B PB B PA A PA A PB
1

T PBT T
11 T1

PBTT T TBT T TT PA A PBPA A PBT TB PB B PA AB PB B PA AT T TT PA A PBB PB B PA A . (17) 

In the case of the single epoch data, matrix B is identity and QN computed according 
to formula (17), is not positive definite. It causes difficulties with the decorrelation procedure 
and leads to incorrect solutions. Therefore, an additional coefficient k is imposed, Cellmer 
(2011): 

11T T
NkQ P kPA A PA A P

1
T PT T

11 T1
PTTP kPA ATPA A PPA A PT TP kPA AP kPA ATPA A PP kPA A

. 
(18)

If the value of this coefficient is less than one, it simulates additional observation data (e.g. 
pseudoranges). It is proposed here to assume k=0.99. This value was derived as optimal from 
tests. The positive definite matrix QNk is a biased estimator of the ambiguity covariance 
matrix. Nevertheless, it is a good approximation for the purpose of decorrelation. The formula 
(18) can also be used for other than single epoch solutions. When using formula (18) in the 
case of multi epoch solutions, the decorrelation process is performed separately in each 
epoch. All decorrelated observation equations are arranged in the form of one observation 
equation system which is the basis of the LS solution. 
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4. NUMERICAL EXAMPLE 
Tha data come from campaign performed in order to monitor local deformation in open-pit 
mine „Adamów” in Central Poland. This project is managed by Dr. Radoslaw Baryla from 
Chair of Satellite Geodesy and Navigation of University of Warmia and Mazury in Olsztyn. 
Figure 1 depicts the location of the surveys. Two GPS stations of ASG-EUPOS (Polish part 
of European Positioning System active geodetic network) were used in test surveys (“KONI” 
and “KUTN”). The surveys were performed on December 9th, 2008, on 50 km, 30 km and 10 
km baselines, with a 30-second sampling rate. Data sets of each baseline were divided into 
several dozen (respectively: 82, 98 and 62) 20-minute sessions (40 epochs). 

 

 

Fig. 1 The location of the test surveys 
http://www.asgeupos.pl/webpg/graph/dwnld/map_pl_EN.jpg 

 

The sessions were processed according to proposed approach. In each 20-minute session, the 
first solution was obtained from one epoch. Further solutions were obtained on the basis of 
data sets subsequently increased with data from consecutive epochs. The decorrelation 
procedure was performed in each epoch using the method derived by Liu et.al. (1999). The 
ambiguity covariance matrix was formed according to formula (18), as a base for the 
decorrelation procedure. The “true” coordinates were derived using Bernese software on the 
basis of an 8 hour data set, Dach (2007). 

Figure 2 presents the results of some selected sessions as the example from among 180 
sessions of the processing of 50 km and 30 km baselines. There are linear residuals, with 
respect to the “true” position from Bernese. The residuals were computed as:

2 2 2r dN dE dU2 2 2dN dE dU2 22
, where dN, dE, dU are accordingly north, east and vertical components of 

the residuals with respect to the "true" position.  
 

baseline 50 km 
a) 

 

b) 
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c) 

 

d) 

 
Fig. 2 The results of the baseline processing (selected examples) 

The blue line depicts the residuals for the solutions with decorrelation, while the red line 
represents the solutions without decorrelation. In case a) the solution without decorrelation 
stabilized after 20th session whereas the solution with decorrelation was close to “true” from 
the first epoch. 

The plot b) presents the session in which the solution without decorrelation gave false 
results whereas a good solution with decorrelation was obtained in the 12th epoch. 

The plots c) and d) show the examples of the results for shorter baseline: about 30 km.  

In the session presented in plot c) the solution without decorrelation stabilized after 7th 
epoch, whereas the correct solution with decorrelation was already stabilized from the 1st 
epoch. In the case shown in plot d) the solution with decorrelation was correct from 1st epoch 
and the solution without decorrelation stabilized after 20th epoch on incorrect value (70 cm 
from correct position). 

Fig. 3 shows the histograms of the correct stable solutions i.e. the frequency of stabilizing 
of the correct solution in a respective period of time. The frequency is expressed in [%] of the 
total number of the solutions. The histograms were plotted on the basis of the results from 62 
sessions for 10 km baseline, 98 sessions for 30 km baseline and 82 sessions for 50 km 
baseline. As we can see in the first histogram for short baselines, the number of the correct 
solutions stabilized in respective periods of time is similar for two variants: with and without 
decorrelation. However for longer baselines, in this case 30 km (the second column), the 
number of correct solution obtained in the starting 5 epochs for the variant without 
decorrelation amounted to 35% and for the variant with decorrelation almost 70 %. The 
impact of the decorrelation procedure is in this case significant. An even more significant 
impact of decorrelation procedure occurs for 50 km baselines (the third column). In the 
starting 5 epochs, over 60% correct solutions were obtained for decorrelation variant and less 
than 5% for the variant without decorrelation. In over 70% cases there were no correct 
solutions until the 40th epoch for the variant without decorrelation. 

The baselines length 
10 km 30 km 50 km 

  
Fig. 3 The histograms of the correct stable solutions  
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5. CONCLUSIONS 
The integer decorrelation procedure can improve the efficiency of the MAFA method. The 
impact of the decorrelation procedure on the efficiency of the MAFA method depends on the 
baseline length. A longer baseline length corresponds to a higher impact of decorrelation on 
the efficiency of the MAFA method. 

The MAFA method makes it possible to obtain good solutions from a single epoch only. 
In this case, the decorrelation procedure is performed on the basis of the biased estimator of 
the ambiguity covariance matrix. In order to derive a form of this matrix, a new coefficient k 
must be applied to obtain a positive definiteness of the covariance matrix.  
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