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ABSTRACT. Recent investigations confirm meaningful but weak teleconnections be-
tween the El Nifio/Southern Oscillation (ENSO) and hydrology in some European regions.
In particular, this finding holds for Polish riverflows in winter and early spring as inferred
from integrating numerous geodetic, geophysical and hydrologic time series. The purpose
of this study is to examine whether such remote teleconnections may have an influence on
hydrologic forecasting. The daily discharge time series from southwestern (SW) Poland
spanning the time interval from 1971 to 2006 are examined. A few winter and spring
peak flows are considered and the issue of their predictability using empirical forecasting
is addressed. Following satisfactory prediction performance reported elsewhere, the mul-
tivariate autoregressive method is used and its modification based on the finite impulse
response filtering is proposed. The initial phases of peak flows are rather acceptably fore-
casted but the accuracy of predictions in the vicinity of local maxima of the hydrographs
is poorer. It has been hypothesized that ENSO signal slightly influences the predictability
of winter and early spring floods in SW Poland. The predictions of flood wave maxima
are the most accurate for floods preceded by normal states, less accurate for peak flows
after La Nina episodes and highly inaccurate for peak flows preceded by El Nino events.
Such a finding can be interpreted in terms of intermittency. Before peak flows preceded
by El Nino there are temporarily persistent low flows followed by a consecutive melting
leading to a considerable intermittency and hence to difficulties in forecasting. Before peak
flows preceded by La Nina episodes there exist ENSO-related positive temperature and
precipitation anomalies in SW Poland causing lower, but still considerable, intermittency
and thus better, but not entirely correct, predictability of hydrologic time series.
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1. INTRODUCTION

Forecasting in hydrology still remains to be an ongoing challenge. There are numerous
methods which aim at predicting different hydrologic variables. Due to possible practi-
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cal applications, the particular emphasis is put on the flood prediction problem. There
are a lot of methods which aim to forecast riverflows. According to Beven (2001), these
techniques are based on physically-based and empirical rainfall-runoff models. Although
model selection plays a key role in predicting performance in hydrology, there are also
some additional, often minor, factors that may amend forecasting accuracy. Among them,
there are influences of remote climatic teleconnections on site-specific riverflows and hence
on their predictions.

The most intriguing climatic teleconnections are driven by the El Nino/Southern Oscil-
lation (ENSO) which can transfer its signal from the equatorial Pacific to remote regions
located thousands of kilometres away. ENSO-climate and ENSO-hydrology teleconnec-
tions have been extensively studied, both globally (e.g. Ropelewski and Halpert, 1987;
Kiladis and Diaz, 1989; Dettinger and Diaz, 2000; Dettinger et al., 2000; Chiew and
McMahon, 2002) and locally (e.g. Price et al., 1998; Pongréacz et al., 2003). In particular, a
few authors have considered such links for Europe. The comprehensive geophysical insight
into ENSO-climate teleconnections in Europe has been provided in 1990’s by Fraedrich
(1990; 1994) and Fraedrich and Miiller (1992). These extensive analyses have shown that
such links exist in winters after the occurrence of warm and cold ENSO episodes and are
driven by shifts of the North Atlantic cyclone tracks. There have also been the attempts
to investigate ENSO-hydrology teleconnections for some European regions (Rimbu et al.,
2004; Karabork and Kahya, 2009; Niedzielski, 2010a). In the context of Polish hydrology,
this body of knowledge has been expanded by Niedzielski (2010a) who provided a detailed
examination of such associations for southwestern (SW) Poland by integrating numerous
geodetic and geophysical ENSO indices (e.g. length of day, axial component of atmo-
spheric angular momentum, Nifio 3.4 index, Southern Oscillation Index) with discharge
time series. Accordingly, it has been found that ENSO may belong to a few factors con-
trolling winter or early spring snow-melt floods in SW Poland. However, such an impact
has been reported to be meaningful, but rather minor.

The time series methods have been widely used in hydrology (Ledolter, 1978; Vogel
and Shallcross, 1996; Toth et al., 2000; Porporato and Ridolfi, 2001; Laio et al., 2003;
Elek and Markus, 2004; Ozcelik and Baykan, 2009). These techniques have also been
employed in hydrologic studies focusing on SW Poland, particularly extensively after
the devastating flood in 1997 which began a broad discussion on the extreme behaviour
of the Odra River (Dubicki et al., 1999). For instance, Van Gelder et al. (1999) have
studied the annual maximum riverflow data from the Odra River basin and fitted several
probability distributions to these time series. Strupczewski et al. (2001) have examined the
annual maximum riverflow data from major Polish rivers and found trends in their mean
values and variances. More recently, Sen and Niedzielski (2010) have examined numerous
statistical characteristics of riverflow in SW Poland with a particular emphasis put on
quantitative regulation assessment, streamflow-topography associations and probabilistic
flood frequency analysis. In particular, the multivariate autoregressive (MAR) models
have been shown as tools for short-term riverflow prediction in SW Poland (Niedzielski
and Czystotowski, 2005; Niedzielski, 2007; Niedzielski, 2010b).

The existing hydrologic forecasting techniques for SW Poland do not utilise ENSO-
hydrology teleconnections. Knowing that such teleconnections may belong to many factors
controlling winter or early spring peak flows in SW Poland, there is a need to verify the
hypothesis that such teleconnections influence not only the hydrologic signal but also the
accuracy of riverflow predictions. This paper presents an initial analysis based on a simple
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comparison between prediction accuracies calculated during winter and spring peak flows
preceded by normal ENSO states as well as by warm and cold ENSO episodes.

2. METHODS

The multivariate daily discharge time series is denoted as x(¢) and is of length n. In this
study, x(t) is composed of 15 univariate data sets z;(t) representing temporal discharge
variation between November 1971 and October 2006 at a site 7, i = 1,...,15.

Following Niedzielski (2007), each component y;(t) of the residual time series y(t) is
computed using the lag-1 differencing operator defined as y;(t) = Va;(t) = z;(t) —x;(t—1).
The aim of such a time series transformation is to obtain the stationary data. The sample
autocorrelation function (ACF) is given by p(k) = 4(k)/7(0) and thus is expressed in
terms of the sample autocovariance function (k) and variance ﬁ( ). On the other hand,
the cross-correlation function (CCF) is defined as puy(k) = Yan(k)/+/7a(0)7(0) and hence
is expressed by means of the sample cross-covariance functlon Yab(k) for two univariate
time series a(t) and b(t) and their variances 4,(0), 4(0), respectively. Both ACF and CCF
are used to access if the signal can be modelled with autoregressive processes.

A zero-mean MAR process of order p is given by

y(t)=ADyt=1)+...+ Alp)y(t —p) +e, (1)

where y(t) is a random vector at a fixed time t defined above, A(j), j = 1,...,p, are
coefficient matrices, e is a multivariate white noise vector with a covariance matrix C.
An order p is estimated using the Schwarz Bayesian Criterion (Schwarz, 1978) whereas
autoregressive coefficient matrices A(1),..., A(p) are determined by the stepwise least-
squares procedure for MAR models (Neumaier and Schneider, 2001).

The prediction of x(t) for k days in the future is computed in the indirect way, i.e.
first, k-day prediction of y(¢) is determined and attached to y(¢) time series; second, the
inverse differencing procedure is applied to the combined time series.

In order to determine k-day prediction of y(t), first, 1-day prediction Py(s), from day
no. (s — 1) to s-th day, is determined using past values of the stochastic process by the
following equation

Py(s) = A(Dy(s = 1) +... + Alp)y(s — p), (2)

where Py(s) = [Pyi(s), ..., Pyn(s)]T; Py;(s) is the prediction of the residual univariate
time series y;(t) determined at a fixed day (s—1);i=1...,m; A(j),j=1...,p, are the
above-mentioned autoregressive coefficient matrices. Second, the predicted Py(s) vector
is attached to the multivariate time series y(s — 1) = [y(1),...,y(s — 1)] and hence the
new multivariate time series y(s) = [y(1),...,y(s — 1),Py(s)] is constructed. Third, 1-
day prediction of §(t) time series is determined using equation (2). This procedure can be
repeated k-times to obtain k-day prediction of y(t). The prediction accuracy is assessed
by a qualitative comparison between the predicted and observed data.

The finite impulse response (FIR) filter based on past and present discharge values
has been used to determine the smoothed discharge time series x(¢). The following FIR
filter can be applied to each discharge time series z;(t), i = 1,...,m
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Bi(t) =Y gt —1+1), (3)
=1

where g;, [ = 1,..., L, are filter coefficients; L is a number of filter coefficients. Both x(t)
and x(t) are concurrently predicted by the MAR technique. The application of the two
time series should help to assess if the smoothed riverflow data can be predicted more
accurately than the raw discharge time series.

3. DATA

The database processed in this study covers the period from November 1971 to October
2006 and includes 15 daily discharge time series from the upper and middle parts of the
Odra River basin (SW Poland). The data have been obtained from Hydrological Yearbooks
of Surface Waters in Poland 1972-1982 and the Geoserver supported by Polish Ministry
of Science and Higher Education (project no. PBZ-KBN-086/P04,/2003).
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The Odra River drains a large area located mainly in western Poland. The headwa-
ters of this river are situated in the Sudetes Mountains in the Czech Republic territory.
However, only a tiny section of the river belongs to the Czech Republic. The elevations
of the Sudetes Mountains reach 1602 m a.s.l. The mountains are aligned in respect to the
NW-SE setting. The rivers draining the Sudetes Mountains transport their waters north-
ward towards the Odra River. High precipitation in the mountains, especially in summer
(June-September), introduces a local flood risk and increases water transport towards the
Odra River. Similarly, melting of snow in winter/spring increases river discharges, both
in the mountains and in the lowland. On the other hand, the majority of right tributaries
of the Odra River drain the lowland and hence do not significantly contribute to the
occurrence of peak flows.

The following left tributaries of the Odra River are examined: Nysa Klodzka, Olawa,
Sleza, Bystrzyca and Kaczawa. The considered right tributaries are: Olza, Klodnica and
Mala Panew. The spatial distribution of gauges with their names is presented in Fig. 1.
The examined part of the basin is relatively large, i.e. 29605 km?. Additionally, the FIR
filter given by equation (3), assuming that the only two filter coefficients are equal to 0.5,
has been applied to determine the smoothed 15-variate time series. The filter modifies a
time series so that its extreme amplitudes become smaller.

There occurred many peak flows along the Odra River between November 1971 and
October 2006, however for the purpose of the analysis seven major winter and spring peak
flows have been chosen. The selection criterion has been based based on the 99% discharge
quantile attained at Malczyce site (580 m?3/s) and at Scinawa site (670 m?/s). According
to Niedzielski (2010a), winter or early spring peak flows in Poland can be somehow (rather
weakly) controlled by ENSO. The selected peak flow events, the corresponding maximum
discharges and information on the preceding ENSO conditions are listed in Tab. 1.

Tab. 1. Winter and spring peak flows in the middle reach of the Odra River between
November 1971 and October 2006 selected by the 99% quantile discharge threshold at-
tained at both Malczyce and Scinawa sites

Date of peak flow Max. discharge | Max. discharge | ENSO episode
at Malczyce site | at Scinawa site | a few months before
[m3 /5] [m?3 /5] peak flow
January 1975 604 708 Weak La Nina
February/March 1977 | 710 795 Weak El Nino
March 1979 840 869 Normal state
February 1987 850 919 Moderate El Nino
May 1996 622 714 Weak La Nina
March 2005 653 702 Weak El Nino
March /April 2006 1210 1190 Normal state

4. WINTER AND SPRING PEAK FLOW FORECASTING VS. ENSO

It can be inferred from Figs. 2-8 that data pre-processing using the FIR filter can improve
the accuracy of the MAR-based empirical predictions. This is probably due to smoothing
which removes insignificant irregularities and emphasizes the flood wave signal. Indeed,
a few last data points have always the greatest influence on the MAR model and the
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corresponding prediction. Thus, small departures from riverflow increase during a flood
may amend the model and lead to predictions that deviate form short-term tendencies.

In order to address the issue of ENSO impact on riverflow empirical forecasting for
SW Poland, it is convenient to classify the aforementioned peak flows in accordance with
ENSO episodes acting before their occurrence (Tab. 1).

Neither March 1979 event nor March/April 2006 peak flow were preceded by ENSO
activity. In the first instance, the hydrograph has been successfully predicted, both in
the first flood phase and in the vicinity of the riverflow maximum (Fig. 4). In the case
of March/April 2006 event, the prediction accuracy has also been kept at the acceptable
level. In the first phase of the peak flow, the predictions are rather accurate or slightly
overestimated (Fig. 8). The maximum is poorly predicted but data processing with the
FIR filter may significantly improve the accuracy around the maximum value.

There are two peak flows under study, i.e. in January 1975 and in May 1996, which
were preceded by La Nina events. In the first instance, the predictions derived over the
initial flood phase have been found to be moderately accurate. However, the maximum of
the flood wave has been poorly forecasted. Such a performance has been improved using
the FIR filter pre-processing (Fig. 2). A Slightly different result holds for the peak flow in
May 1996. The predictions are accurate in the first phase and are also quite acceptable for
the flood wave maximum (Fig. 6). This is probably because May goes beyond the period
of ENSO teleconnections for Europe (Fraedrich and Miiller, 1992).

El Nino episodes preceded peak flows in SW Poland in February /March 1977, February
1987 and March 2005. In the first case, hydrologic predictions have been relatively accurate
for the first phase of the peak flow (fast incline in the discharge values) and have been
found non-acceptable in the vicinity of the local maximum. The FIR-based pre-processing
have offered better predictions, however — even in the smoothed case — the maximum of
the flood wave has not been accurately forecasted (Fig. 3). The similar finding holds for
February 1987. Indeed, the maxima are rather poorly predicted whereas the forecasts
determined for the first phase of the peak flow coincide with the observational data (Fig.
5). The worst prediction performance amongst peak flows preceded by El Nino episodes
has been reported for March 2005. Only a few 3-days forecasts fit the observational data
during the first phase of the peak flow. The majority of individual 3-days predictions have
been found to be inaccurate, specifically around local flood wave maxima (Fig. 7).

Although the above-mentioned analysis is entirely qualitative and rather subjective,
it offers an initial assessment on how prediction techniques are vulnerable to the minor
ENSO signal in SW Poland detected earlier by Niedzielski (2010a). It can be inferred
from the aforementioned analysis that the best prediction performance is found for peak
flows which are not preceded by ENSO episodes. Worse, but still acceptable especially
in the first phase of a flood, are forecasts calculated for peak flows preceded by La Nina
events. Finally, the worst predictions amongst those considered in this paper have been
determined for peak flows preceded by El Nino episodes.

It is thus likely that the minor ENSO signal in the hydrologic data from SW Poland
may slightly influence their forecasting accuracy. However, this finding can be treated as a
hypothesis because only a few winter and early spring peak flows have been considered. In
addition, it should be noted that qualitative evaluation given in the present paper leaves
a lot be desired and hence further quantitative investigations are needed in the future.
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Fig. 2. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (January 1975); (a) Scinawa, non-filtered data, (b) Scinawa, filtered
data, (c¢) Malczyce, non-filtered data; (d) Malczyce, filtered data
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Fig. 3. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (February/March 1977); (a) Scinawa, non-filtered data, (b) Scinawa,
filtered data, (c) Malczyce, non-filtered data; (d) Malczyce, filtered data
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Fig. 4. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (March 1979); (a) Scinawa, non-filtered data, (b) Scinawa, filtered
data, (c) Malczyce, non-filtered data; (d) Malczyce, filtered data
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Fig. 5. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (February 1987); (a) Scinawa, non-filtered data, (b) Scinawa,
filtered data, (c) Malczyce, non-filtered data; (d) Malczyce, filtered data
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Fig. 6. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (May 1996); (a) Scinawa, non-filtered data, (b) Scinawa, filtered
data, (c¢) Malczyce, non-filtered data; (d) Malczyce, filtered data
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Fig. 7. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (March 2005); (a) Scinawa, non-filtered data, (b) Scinawa, filtered
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Fig. 8. Comparison between the observed discharge and its 3-day predictions based on
the MAR technique (March/April 2006); (a) Scinawa, non-filtered data, (b) Scinawa,
filtered data, (c) Malczyce, non-filtered data; (d) Malczyce, filtered data
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In the light of the process-based interpretation given by Niedzielski (2010a) and based
on the influential work by Fraedrich and Miiller (1992) a few conclusions can be made.
Winter or early spring peak flows in SW Poland after El Nifio occurrence may be partially
driven by a prolonged and increased snow retention (ENSO-related) and a subsequent
melting of snow (probably due to non-ENSO reasons). This may lead to the intermittency
in the sense that a prolonged snow retention determines temporarily persistent low flows
which can be abruptly changed into peak flows at the beginning of a thawing period. Such
a burst of activity is highly irregular and may cause problems in forecasting discharge
data. Following Niedzielski (2010a), peak flows in SW Poland, which occur after La Nina,
may be partially controlled by positive temperature and precipitation anomalies leading to
their contribution to riverflow. If major regional hydrometorological controlling factors are
superimposed on such ENSO-related conditions, a burst of activity is probably less abrupt,
which still generates uncertainty, but also makes hydrologic predictions less noisy than
those calculated after El Nino episodes. This may explain the worst prediction performance
for peak flows after warm ENSO events and better, but still mediocre, performance for
peak flows preceded by cold ENSO episodes.

5. CONCLUSIONS

The MAR technique has been applied to predict winter and spring peak flows in the Odra
River basin in SW Poland. Two input data sets have been considered, i.e. the observed
daily discharge data and the same data smoothed using the FIR filter. The MAR model
applied to the non-filtered data allows one to compute accurate discharge predictions at
the very beginning phase of winter and spring peak flows. The predictions of maximum
discharges during winter and spring peak flows are less accurate, or inaccurate at all,
which may be probably linked to ENSO occurrence. Such an inaccuracy can be partially
removed using the MAR technique with the FIR-processed input discharge time series,
however a level of improvement is hypothesized to be somehow related to ENSO episodes
preceding hydrologic events in SW Poland.

It has been hypothesized that ENSO signal may slightly influence the predictability
of winter and early spring peak flows in SW Poland. A few experiments accounting for
peak flows preceded by normal states as well as La Nina and El Nino conditions have
been carried out. The predictive performance of the aforementioned empirical method in
these three ENSO-related states has been qualitatively assessed. In the light of the ex-
ercise, short-term hydrologic forecasts seem to be the most accurate for floods preceded
by normal states, less accurate for peak flows after La Nina events and rather inaccu-
rate for floods preceded by El Nino episodes. This has been explained by the notion of
intermittency. Its values may be considerable in the latter instance because of temporar-
ily persistent low flows due to ENSO followed by a subsequent melting due to different
hydrometeorological processes. Lower, but still considerable, intermittency can be associ-
ated with cases when La Nina events precede peak flows. This, on the other hand, is due
to ENSO-related positive temperature and precipitation anomalies in SW Poland during
winter which lead to less abrupt changes in discharge time series. Such irregularities make
forecasting complex.

It is worth mentioning that the present exercise provides only qualitative assessment
of potential ENSO impact on hydrologic predictability. Only several peak flows have been
consider and thus there is need for more comprehensive study in this field.
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