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ABSTRACT. If the gravitational potential or the disturbing potential of the Earth be 
downward continued by harmonic continuation inside the Earth’s topography, it will 
be biased, the bias being the difference between the downward continued fictitious, 
harmonic potential and the real potential inside the masses. We use initial value 
problem techniques to solve for the bias. First, the solution is derived for a constant 
topographic density, in which case the bias can be expressed by a very simple formula 
related with the topographic height above the computation point. Second, for an 
arbitrary density distribution the bias becomes an integral along the vertical from the 
computation point to the Earth’s surface.  No topographic masses, except those along 
the vertical through the computation point, affect the bias. (To be exact, only the 
direct and indirect effects of an arbitrarily small but finite volume of mass around the 
surface point along the radius must be considered.) This implies that the frequently 
computed terrain effect is not needed (except, possibly, for an arbitrarily small inner-
zone around the computation point) for computing the geoid by the method of 
analytical continuation. 
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1. INTRODUCTION 
If we disregard or remove the effect of the atmosphere, the gravitational potential of 
the Earth is harmonic in the exterior of the Earth’s surface. As this is not the case 
below the surface, the analytically continued exterior disturbing potential will be 
biased. Bjerhammar (1962) introduced a technique for quasigeoid determination with 
analytical continuation of the surface gravity anomaly to an internal sphere (the 
Bjerhammar sphere). Once the downward continued gravity anomaly on the sphere 
has been determined, he showed that any related classical formula that integrates the 
fictitious gravity anomaly on the internal sphere yields the correct function (e.g., 
gravity anomaly, gradient of gravity anomaly, height anomaly and deflections of the 
vertical) in the exterior of the Earth. (See also Heiskanen and Moritz 1967, Sect. 8-10 
and Moritz 1980, Sect. 45) On the contrary, if the integral formula is applied with the 
computational point inside the topography, the result will be a fictitious or biased 
quantity. For example, if Stokes’ formula is applied to determine the geoid height, the 
result will be biased. However, let us imagine that the disturbing potential (the gravity 
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potential minus the normal potential) can be analytically continued to sea level, and 
that the topographic bias can be determined. Then, by subtracting the bias from the 
analytically continued potential, the true disturbing potential at sea level is obtained, 
and also the geoid height can be determined by applying Bruns’ theorem to the 
potential. In this way it would be possible to determine the geoid in a very direct way 
by analytical continuation. 

It is not proved that the downward continued disturbing potential T will exist in 
the strong sense within the topographic masses. Nevertheless, if we subtract the effect 
of a Bouguer shell ( )BV  from T [and refer to the approximation theorems of Krarup-
Runge (Krarup 1969; Moritz 180, Sect. 8) and Keldysh-Lavrentieff (Landkof 1972; 
Bjerhammar 1974)], we may expect that the reduced potential BT V BV  is harmonic and 
can be arbitrarily well approximated all the way down to the geoid. We will not be 
concerned with such approximations in this article. The interested reader can study, 
e.g. Moritz (1980, Sect. 45). Usually this problem is studied as that of continuing a 
finite series of spherical harmonics, representing the external potential of the Earth, 
analytically to sea level (e.g. Cook 1967, Sjöberg 1977 and Ågren 2004), but such a 
series will suffer not only from the topographic bias, but also from the truncation error 
of the series and, possibly, also from the divergence of the series when applied at sea 
level.  

Our main concern in this study is the derivation of the topographic bias. Sjöberg 
(2007) performed such a study by decomposing the topographic potential into two 
parts (namely those generated by a Bouguer shell and the remaining topography, the 
terrain, respectively,) and compared the analytically continued potential with the true 
potential. This paper resulted in some critical remarks by Vermeer (2008), which were 
rather concerned with the analytical continuation error of the spherical harmonic 
series than with the topographic bias as pointed out by Sjöberg (2008). In two related 
studies by Sjöberg (2009a) and (2009b) the topographic bias was studied by 
employing digital terrain models as well as a Taylor series. In the present study the 
approach is different: we study the topographic bias as an initial value problem (IVP). 
An IVP is the problem of solving an ordinary differential equation related with one or 
several specific conditions (initial values). In the present case the differential equation 
is of second order, related with four conditions as specified in Eqs. (2)-(5) below. 
Related studies for the potential itself were performed by Holota (1994) and (1996). 

Usually a function is defined as being harmonic, if it satisfies Laplace’s equation 
in a domain, i.e. in a certain neighbourhood of a computation point. This condition, 
which may be difficult to prove/meet for the potential close to the boundary of 
topographic masses, is not important for our study, as our definition of topographic 
bias simply implies that the function does not satisfy Laplace’s equation at the 
computation point. 

In this study a spherical template will approximate the Earth’s topography with 
arbitrary number and sizes of compartments. The IVP will be studied for a point 
inside the compartment (i.e. away from its boundary). The limiting case of the 
topographic bias (when the size of the compartment goes to zero) is studied in Sect. 
2.3. The concept of the topographic bias is important in determining the geoid from 
the external gravity field by the method of analytical continuation. 
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2. FORMULATING AND SOLVING THE IVP 
In this section we will first present some basic formulas in formulating the IVP, and 
then we proceed to solve the problem under different assumptions on the topographic 
density distribution.  

2.1. BASIC FORMULAS 

The topographic potential bias of the analytically continued disturbing potential *T  is 
defined by the formula 

                                                 *b T T*T T* ,                                                                  (1) 

where T* and T are the analytically continued and the true disturbing potentials, 
respectively. A reasonable assumption on the Earth surface will be that it is star-
shaped.  Outside and at the Earth’s surface the bias and its first radial derivative are 
both zero, and we can therefore introduce the following initial values to warrant 
continuity at the boundary: 

                                              0b 0   ,  if sr rsrs                                                            (2) 

and 

                                             0b
r
b 00
r

0 , if  sr rsrs ,                                                            (3)   

where r and sr  are the geocentric radii of the computation point and the Earth’s 
surface along the radius vector through the computation point, respectively. 
Moreover, as the downward continuation (dwc) is based on harmonic functions, *T  is 
harmonic also after dwc inside the topographic masses, and it therefore obeys 
Laplace’s equation there, i.e. 

                                           * 0T* 0T   for r RR ,                                                            (4)                 

where  is the Laplace operator and R is the radius of sea level.   On the other hand, 
within the masses the true disturbing potential T obeys Poisson’s differential equation, 
so that 

                                          4b 4b 4 ,   if  sR r rsr rs ,                                                 (5) 

where  is the product of the gravitational constant and density at the computation 
point.    

Now, let us decompose the topographic potential t
PV  at the arbitrarily located 

computation point P (on or above sea level) into the Bouguer shell potential B
PV  and 

the terrain/ residual topographic potential te
PV : 

                                            t B te
P P PV V VB te

P PV VBB
P PP .                                                                  (6) 

Here we assume (without loss of generality) that the density distribution of the 
Bouguer shell is radial symmetric and determined by the radial density distribution at 
the computation point P. We also assume a spherical approximation of the shape of 
sea level with radius R, and the upper radius of the Bouguer shell as given by the 
radius c of topographic height at P, i.e. Sc r PSr PS . Note that Eq. (6) decomposes the 
topographic potential into the contributions from the Bouguer shell VB and the terrain 
Vte, and the sphere of radius c is the exterior surface of the Bouguer shell. In the 
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computation of any derivative of t
PV  we will regard c as a constant (although this 

leads to an approximation in the solution of the IVP, which we will discuss in Sect. 
2.3).  This implies that 

                            0t B
P PV V 0t B
P PV Vt
P P , if Pr cc ,                                                             (7a) 

and  

                            4 ( )t B
P PV V P4t B
P PV V 4t B
P P 4 ( )4 ( , if  PR r cPr cP ,                                          (7b) 

where  is the Laplace operator, Pr  is geocentric radius of P and  is density. Eqs. 
(6), (7a) and (7b) yield that  

                           0te t B
P P PV V V 0te t B
P P PV V Vte tt
P P PP , if Pr cc  and PR r cPr cP ,                            (8) 

which, by our definition above, implies that the terrain does not contribute to the 
topographic bias, except possibly for point P located at the surface with radius c. As 
the second order derivatives of the potential generally do not exist at the boundary, 
Laplace’s and Poisson’s differential equations of Eqs. (7a) and (7b) are not applicable 
there (Kellog 1954, p. 153). However, this problem is easily circumvented by simply 
removing the effect te

PdV of a small volume of mass of the terrain around the surface 
point, such that the reduced terrain potential te te te

P P PV V dV te
P PdVP PP

teV te
P

teV te
P becomes harmonic along 

the radius vector, i.e.  

                         0te
PV 0PVP 0te
PVP   for r >R .                                                                            (9)  

This implies also that the disturbing potential PT  (to be downward continued) is 
reduced to te

P P PT T dT te
P PdTP PPTP T dPP , and the indirect effect te

PdV  must be added to the 
computed/downward continued potential in order not to introduce an additional bias. 
It is obvious that the smaller we make the (arbitrary) mass volume generating te

PdV , 
the smaller will be the sum of the direct and indirect effects of this volume (but, 
admittedly, the more critical/difficult becomes the dwc of PTPTP ). This is even more 
obvious, if we consider the approximation the exterior surface of this volume by a 
sloping plane centred at the Earth’s surface. In case of a constant topographic density, 
the terrain effect of this innermost mass volume will be exactly zero, because the 
potential generated by the masses below the surface of the Bouguer shell (to be 
subtracted for) exactly compensates the potential of the positive mass contribution 
above the Bouguer shell. Hence, in practice there is no contribution to the topographic 
bias of PT  from the terrain.  

All these derivations lead to the result that the topographic bias of Eq. (1) is a 
function of the mass of the Bouguer shell alone. Below we will determine the 
topographic bias of this potential in the cases of a constant topographic density ( Sect. 
2.2) and for a general density distribution (Sect. 2.3). 

 In the solutions that follow we will start from the following tentative general 
model for the topographic bias of the potential TT within the topographic masses: 

                         n
n

n
b b rn

n
nb rn ,    SR r r cSr r cS ,                                                          (10) 
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where the coefficients nb should be consistent with Laplace’s and Poisson’s equations 
(4) and (5) and the initial values provided by Eqs. (2) and (3). (Note that the model is 
chosen under the assumption that the coefficients are constants. Cf. Sect. 2.3.) The 
Laplace operator working on Eq. (10) yields 

 

                    
2

2
2

2 ( 1)n n
n n

n n
b b r n n b r

r r r

2 2b 222
22

nnr r r2r r r2 n
n

n( )n n b r( 1)( 1) n( 1) 2b rb rnnb n
nb rnnn .                                  (11) 

Hence, it remains to determine the coefficients nb  under the initial values of Eqs. (2)-
(5) and by considering Eq. (11). We will consider both a constant and radially 
variable density distribution in the topography (Sects. 2.2-2.3 and 2.4, respectively). 

2.2. SOLUTION FOR A CONSTANT TOPOGRAPHIC DENSITY  

Let  be constant within the topography, implying that the left hand side of Eq. (5) 
must be a constant for any r in the interval sR r rsr rs , i.e. the left hand-side must be 
independent of r. Hence, from Eq. (11) follows that only terms with 1b 1b , 0b  and 2b  of 
the series for b in Eq. (10) are different from zero. Thus one obtains 

                      21
0 2

bb b b r
r

2
0 2

b b b r0 2
b 1b b1b ,                                                                                (12)  

and from Eq. (5) follows also that 2 2 / 3b 22 / 3 . Furthermore, by inserting Eq. (12) 
into Eqs. (2) and (3)  we can also solve for 1b 1b  and 0b , resulting in the following 
solution for the bias: 

                       
3

2 222 3
3

s
s

rb r r
r

2 32r2
3

222 2 22r 2
sr r23s
s

s 2 2232r2 srs

r sr s  , sR r rsr rs                                                 (13) 

or,  (Sjöberg 2007) 

                         
3

2 22
3

H
b H

r
2

3H
22 2 2 H2 2H 2 2 H

33
H

3 r3
                                                          (14a) 

where 

                       
,

0 ,
s s

s

r r if R r r
H

if r r
sif R r rsr r if,

H
r r if,,srs r

srs0 , if0 if0
.                                                        (14b) 

The topographic bias solved above is that for an Earth model, whose topography is 
a spherical template, and the solution is found for any point inside a compartment of 
the template. Although this would be the case for any numerical application, the 
question arises, what happens to the topographic bias in the limit, when the size of the 
compartment vanishes? The solution to this problem is discussed in the next 
subsection. 

2.3. THE TOPOGRAPHIC BIAS IN THE LIMITING CASE 

Let us now use the notations b  and sr  for the topographic bias and surface radius of a 
compartment within the Earth template model. Then it holds that 
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3

2 22 3S
S P

P

rb k r r
r

32rk 2 22r 2
S Pr r23S
S P
2 22 SrS 232 SrS

PrP
S Pr S P ,                                                                      (15) 

where 2 /3k 22 /3 and Pr  is the radius of the computation point P with 

P sR r c r PP sr c r PP s . Denoting the real Earth radius by Sr , it follows directly from Eq. 
(15) that 

         
3

22lim 3S
S P

P

rb k r r
r

32r 22r
S Pr r23 S P
22 SrS 232

PrP
S Pr S P ,    as  S Sr rSrS .                                                        (16) 

Hence, b  approaches smoothly the limiting case. Although, in this case the condition 
of Eq. (5) is violated, there is no other option for the topographic bias of the real Earth 
than that of Eq. (16).  

2.4. SOLUTION FOR AN ARBITRARY TOPOGRAPHIC DENSITY 
DISTRIBUTION 
We now generalize the topographic density distribution along the radial direction at 
the computation point to the following equation, consistent with Eq. (11): 

                   2( ) n
n

n
r a r( )) n

2n
na rn

2 , sR r r sr r  ,                                                        (17) 

where we assume that the series is absolutely convergent and the coefficients na  
govern the density distribution. Also in this case we assume that b can be represented 
by Eq. (10), and by inserting Eqs. (11) and (17) into Eq. (5) we arrive at 

                2 2( 1) 4n n
n n

n n
n n b r a r

n
( n nn( 2n) n

n1) 44 na r4 n422 442 na r44 , sR r rsr rs ,                                           (18) 

where we can identify most of the coefficients nb . The result is 

                 4
( 1)

n
n

ab
n n
4 a4
(

n4 na
1)1)

, if 0n 0  and 1n 1.                                                          (19)  

 Hence, the solution can now be written 

                  1
0

bb b db
r 0

b b db0
b 1b b1b ,                                                                                    (20a) 

where the known part becomes 

               
1,0

4
( 1)

nn

n
n

adb r
n n(n(

1,0
(

44
1)(

na rna
n((

aa
n( 1)

r .                                                                             (20b) 

    In order to determine the remaining coefficients we reconsider Eqs. (2) and (3). 
From Eqs. (3), (20a) and (20b) we obtain 

              1
1

1,0

4
1

nn
s

n
n

ab r
n1b 1 n

1,0

4444
1

nr
n
anaaa 1

n 1 srs ,                                                                               (21) 

and Eq. (2) yields 
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                 0

1,0

4 nn
s

n
n

ab r
nn

1,0

44 n
sn s

a rn
s

aaa
n

.                                                                                   (22) 

The solution is thus provided by Eqs. (20a, b)-(22). It requires that the coefficients na  
be known. As we assumed that the series of Eq. (17) is absolutely convergent, the 
convergences of Eqs. (20b), (21) and (22) follow. 

A more general form of the solution is provided by the following proposition. 

Proposition 1: For sR r rsr rs  the topographic potential bias can be written 

                     
2

4 ( )
sr

r

xb x x dx
r

2

44 dxd
r

s 2x( )x( ) x xxx
rr

.                                                                     (23) 

Proof: Let us first introduce the abbreviation 

                       ( ) 4 ( )k x x44 ( )4 ( .                                                                                    (24) 

We want to verify that the possible solution of the bias  

                       
2

( ) ( )
sr

r

xb r k x x dx
r

2

dxd
r

s 2x( )k x( )( x x dx dx
rr

                                                                     (25) 

satisfies Eqs. (2), (3) and (5). Eq. (2) follows directly from Eq. (25). Moreover, from 

                        
2( )(́ ) ( )

sr

r

db r xb r k x dx
dr r

db r( )( )db r( )( )
d

2xs

dx
r

( ) x( )( x( )( )                                                              (26) 

it follows also that Eq. (3) is satisfied. Finally, as 

                        
2

3´́ ( ) 2 ( ) ( )
sr

r

xb r k x dx k r
r

( )(2 3r

2s x
3( ) (3

xk d k( ) (( ) 3

x ,                                                              (27) 

 it follows that 

                         2( ) ´́ ( ) (́ ) ( )b r b r b r k r
r
2( ) ´́ ( ) (́ ) ( )b( ) ´́ ( ) (́ ) () ´́ ( ) (́ ) (2 ,                                                          (28) 

and we have thus verified that the candidate solution b satisfies the proposition. 

However, it remains to show that b is the one and only solution. For that reason 
we assume that there is also another solution 

                        ( ) ( ) ( )g r b r f r( ) ( )f( ) (( ) (                                                                              (29) 

for some function ( )f r . As function g must satisfy Eqs. (2), (3) and (29), it follows 
that ( ) '( ) 0s sf r f r'( ) 0s'(' s(( , and f must also be harmonic in the interval sR r rsr rs . 
However, as a harmonic function attains it extreme values at the boundary, it follows 
that f vanishes in the whole interval.  

The solution for f can also be obtained as follows: Let us assume that 

            ( ) n
n

n
f r f rn

n
nf rn .                                                                                           (30) 

Then it holds that 
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             22( ) ''( ) '( ) ( 1) n
n

n
f r f r f r n n f r

r
2f r f r f r( ) ''( ) '( )'' '2 2

n
n

nn n f r( 1)( n                                                (31) 

As f must satisfy Laplace’s equation for any r in the interval, it follows that 0nf 0  for 
all n except for n = 0 and n = 2. Hence, 

             2
0 2( )f r f f r2
0 2f f r0 2                                                                                             (32) 

 and 

              2'( ) 2f r f r2f r22 .                                                                                               (33) 

Equating Sf r and ' Sf r to zero yields that  

               0 2 ( ) 0f f f r2 ( ) 0f f r2 ( ,                                                                                     (34)  

which is exactly what we postulated. 

Note.  As with the solution discussed in Subsect. 2.2, the solution derived in this 
subsection holds strictly for the template model, while for the real Earth topography, 
we refer to the limiting case of Subsect.2.3. 

3. CONCLUDING REMARKS 
In the case of a constant topographic density we have shown that the topographic 
potential bias can be expressed by the simple formula of Eq. (13). For an arbitrary 
density distribution the formula is also simple, being a one-dimensional integral along 
the vertical through the computation point. Ågren (2004, Sect. 8.4.3) compared Eq. 
(13) with Rapp’s (1997) approach to correct a series representation in external type 
spherical harmonics of the geoid height, and he concluded that the two techniques are 
practically identical. 

By adding the topographic potential bias to the downward continued disturbing 
potential at sea level one can easily use Bruns’ formula to determine the geoid height. 
The downward continuation of the disturbing potential can be performed by 
gravimetric data alone (e.g., Sjöberg 2003a). Hence, from a theoretical point of view, 
by applying the technique of analytical continuation the frequently applied terrain 
effect is not needed to determine the geoid height. (Admittedly, we have removed and 
restored the effect of an arbitrarily small mass of the terrain at the surface point.) On 
the other hand, the terrain effect can be numerically efficient to smooth the observed 
gravity anomaly or disturbing potential to allow better interpolation and Stokes’ 
integration as well and in particular to allow a practical solution to the analytical 
downward continuation problem. However, the removal and restoration (r-r) of the 
terrain effect must therefore not necessarily be carried out with theoretical rigour, but 
only in such a way that the r-r technique be consistent.)  

Finally, it should be stated that this article dealt with the topographic bias of the 
downward continued disturbing potential, and we did not dwell upon the common 
(Molodensky) problem to compute the disturbing potential at the surface from gravity 
anomalies. A scheme to carry out all these steps is given by the KTH (acronym for 
Royal Institute of Technology) method for geoid determination, presented, e.g., in 
Sjöberg (2003b), and the origin of the present article was actually to determine the 
potential bias of this method with clarity.  
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