
ARTIFICIAL SATELLITES, Vol. 44, No. 1 – 2009 
   DOI: 10.2478/v10018-009-0015-6 

 
 
 
 
 
 

DETECTION, IDENTIFICATION AND MITIGATION OF OUTLIERS 
BY SOLVING OBSERVATION EQUATIONS WITH OUTLIERS AS 

PART OF UNKNOWNS 
 
 

Hiroshi Isshiki 
School of Naval Architecture and Ocean Engineering 

University of Ulsan 
Ulsan 680-749, Republic of Korea 

Tel: 82-52-259-2166 
Fax: 82-52-259-2836 

Email: isshiki@dab.hi-ho.ne.jp 
 
 
 
ABSTRACT. The conventional RAIM based on the least square algorithm of the residuals of 
the snapshot data can detect the single outlier with high probability, but it can miss the 
multiple outliers frequently. So, it invites a serious problem of the missed detection. We must 
clarify this problem, and develop a method to prevent the missed detection of the multiple 
outliers. In the present paper, a method to detect multiple outliers more correctly is discussed, 
and the numerical results seem much improved and appropriate.
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1. INTRODUCTION 
The conventional RAIM based on the least square algorithm of the residuals of the snapshot 
data can detect the single outlier with high probability, but it can miss the multiple outliers 
frequently. This can be proved mathematically. For example, if the outliers are any linear 
combinations of the columns of the design matrix, the residuals due to these outliers are equal 
to zero. Namely, these outliers may not be detected correctly by analyzing the residuals. So, it 
invites a serious problem of the missed and/or wrong detection. Many researchers have 
challenged to solve this problem. However, none of them has succeeded in obtaining a 
reliable method for detecting multiple outliers. 

In the present paper, the problem is reexamined from the very basic level, and a new 
method is proposed for outlier detection. The problem is transformed into a minimum value 
problem, where the number of the outliers and the list of the satellites with the outliers are the 
parts of the unknowns. However, several solutions to the problem could exist when the 
redundancy is not enough, and we must choose a realistic solution among them. Introduction 
of a constraint to the solution could be effective to choose the solution from the candidates. 
For example, if the outliers are assumed positive, the numerical results seem improved and 
appropriate in a case when the outliers are really positive. However, the outliers due to 
multi-path could be positive or negative. A complete solution without imposing any 
constraints may require more redundancy or more information other than residuals. 
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2. MATHEMATICAL BACKGROUND
2.1. Observation Equations 
The pseudo range observation equation is given as 
    iiiiii feczZyYxXP feczyx 222 )()()(                             (1) 
where 
    iP : pseudo range measurement of the i -th satellite, 
    iii ZYX ,, : coordinates of the satellite antenna, 
    zyx ,, : coordinates of the receiver antenna, 
    c : speed of light, 
    : receiver clock bias, 
    ie : zero mean Gaussian white noise ( ),0(~ 2

iei Ne 2
ie ), 

    if : magnitude of outlier related to the i -th satellite, 
Satellite clock bias, ionosphere and troposphere delays etc. are neglected or included in 

ie . 
A linearized observation equation is obtained as follows. The state vector is defined as 

    Tczyx ][ ][x .                                                    (2) 
Let 
    ccczzzyyyxxx 0000 ,,, ,                         (3) 
where 0x , 0y , 0z  and 00c  is a nominal state sufficiently close to the actual state. The 
perturbation state is given as 
    Tczyx ][ ]zyx[x .                                              (4) 
The observation equation is linearized as  
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where i0i0  is defined as 
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00 )()()( zZyYxX iiii z(y(x0i .                                  (6) 

Let the number of the satellites be N . Then, the observation equations can be written in 
a matrix form as 
    fexHy feH ,                                                        (7) 
where xx  in equation (5) is replaced by x  for simplicity, and 
    0ρPy ρP ,                                                           (8a) 
    T

NPPP ][ 21 �[P ,                                                (8b) 
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    T
Nfff ][ 21 �[f .                                                (8f) 

The outlier f  may be considered as a part of the solution or a part of errors. If f  is a 
part of the solution, the observation equation (7) may be written as 

    e
f
x

IHy e
ff
x

][ .                     (9) 

If we assume f  is constant through the whole observation, this equation has a same structure 
as that for the carrier phase positioning. However, f  changes with time in general, and this 
makes the problem rather difficult. 

2.2. Property of Residuals and Outliers 
In this section, f  is considered as a part of errors (Teunissen (1998), Macabiau et al. (2005), 
Martini et al. (2006a, b)). Then, the weighted least squares: 
    )(ˆm i n)ˆ(ˆ xx

x
RR m                                                      

(10a) 
    )()()(ˆ 12

1 HxyQHxyHxyx eQe
HH(H 1

1
TR                                (10b) 

is applied, where x̂  is the estimation of x  and eQ  is the variance-covariance matrix of y  
or e : 
    )()( eyQe DD DD                                                      (11) 
where ]))())(([()( TEEED yyyyy EEE The solution of equation (10) is given as 
    yQHHQHx ee

111 )(ˆ 111( TT .                                               (12) 
The variance and Covariance Matrix of x̂  is given by 
    11

ˆ )()ˆ( 11( HQHxQ ex
TD .                                              (13) 

Definition of residual T
Nrrr ]ˆˆˆ[ˆ 21 �[r  is given as 

    xHyr ˆˆ Hy  
      PyyQHHQHHy ee PHy 111 )( TT ,                                     (14) 
where 
    111 )( 111

ee QHHQHHIP TT .                                            (15) 
The variance and Covariance Matrix of r̂  is given as 
    TD PPQrQ er PD )ˆ(ˆ .                                                  (16) 
As easily confirmed, P  is an idempotent matrix, that is, 
    �,2,1, 1nn PP ,                                                   (17) 
and satisfies 
    ,01 01PQH e

T                                                         (18a) 
    00PH .                                                            (18b) 
Hence 
    )()(ˆ fePfexHPPyr fPfePP ,                                       (19) 
and 
    0)(ˆ 11 011 fePQHrQH ee

TT .                                           (20) 
Equation (18b) means that the matrix P  is singular. And if the vector fe f  is a linear 

combination of columns of the design matrix H , it makes the residual zero because of 
equation (18b) 

Detection of the outliers from the residual r̂  is discussed in Appendix A. 
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3. ALGORITHM FOR OUTLIER IDENTIFICATION 

3.1. Solution of Observation Equation for Determination of Magnitude of Known 
Outliers by the conventional method 

When qiii ,,, 21 � -th measurements have outliers qfff ,,, 21 � , the observation equation 
may be written as 
    eCfHxy eCH ,                                                      (21) 
where C  is a matrix of order qN q  whose qkkik ,,2,1),,( �1  elements are equal to 
one and the other ones are zero, and T

qfff ][ 21 �[f  is an unknown vector of order 
11q  (Teunissen (1998)). 

The least square solution x  and f  of equation (21) may be obtained by solving 
    ),(m i n),(

,
fxfx

fx
RR m .                                                (22a) 

    2
1),( 1

eQ
CfHxyfxR  

          )()( 1 CfHxyQCfHxy e CHCH( 1T .                                (22b) 
Equation (22) gives 
     )()(20 1 fCxHyQCfHx e CH2 1TTTT f( x ,                               (23) 
where xx  and ff  are the variations of x  and f . Now, we have 
    fCQHxHQHyQH eee

111 111 HH TTT ,                                       (24a) 
    fCQCxHQCyQC eee

111 111 CC TTT .                                       (24b) 
Solution x  and f  are now obtained by solving equation (24) as  
    yPQCPCQCCIQHHQHx eeee ))(()( 111111 111111 C( TTTT ,                        (25a) 
    yPQCCPQCf ee

111 )( 111( TT .                                           (25b) 
If matrix A  of order Nq N  and B  of order NN4  are defined as 
    PQCCPQCA ee

111 )( 111( TT ,                                            (26a) 
    111 )( 111( ee QHHQHB TT ,                                              (26b) 
x  and f  may be expressed as 

    yCAIBx )( CB ,                                                     (27a) 
    Ayf A ,                                                            (27b) 
and the variance matrices xQ  and fQ  of x  and f  are derived as 
    TTTD BCAIQCAIBxQ ex )()()( ACBD ,                                (28a) 
    TD AQAfQ ef AD )( .                                                 (28b) 

The residual in this case is derived as 
    fCxHyr CHy  
      yCACAIHBI ])([ CCH[  
      yCAIP )( CP ,                                                     (29) 
and the variance matrix rQ  is obtained as 
    TT PCAIQCAIPQ er )()( CCP .                                         (30) 

If the order of matrix C  is 11N  and C  and f  become a vector c  and a scalar f , 
The row vector A  can be written as 
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Then, we have 
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f  and fQ  may be rewritten as 
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where the following relation is used to derive equation (34): 
    TPPQQ er P  

       TTTTT ])([])([ 111111 111111[ eeeee QHHQHHIQQHHQHHI  

       ])([])([ 11111 TTTT HHQHHQIHHQHHQ eeee
11111 QH[  

       TT HHQHHQ ee
11 )( 11HQ .                                           (36) 

Hence, we have 
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In appendix A, the outliers may be obtained from a method based on the residuals r̂  or 
equation (19). Equations (32) and (33) correspond to equations (A.5) and (A.7) in Appendix A 
respectively. It has been confirmed numerically by the present authors that the same results 
are obtained by the method discussed in Appendix A. 

3.2. Solution of Observation Equation for Identification and Magnitude Determination 
of Unknown Outliers by the New Method 

Let N  and q  be the numbers of the satellites and the outliers. The Observation 
equation is given by 
    eCfHxy eCH ,                                                      (21) 
where C  is qN q  matrix, and 1,,1,0),,( 10 qkkik �  components are one and the other 
zero. However, C  is also one of the unknowns in this case. Namely, q and 

1,,1,0, 10 qkik �  are unknowns. 

Now, C , x  and  f  are the solution of 
    ),(m i n),(

,
fxfx

fx
RR m ,                                                (38a) 

    under the constraints if necessary, for example: 
        1,,1,0,0 100 qkfk � ,                                          (38b) 
    where 
    )()(),( 1 CfHxyQCfHxyfx e CHCH( 1TR .                               (38c) 
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The constraint condition (38b) is not necessarily required, but an appropriate constraint 
condition may be effective if there is any. In the present paper, we assume that the delay of the 
signal corresponds to the positive outlier. If any abnormality in the ionosphere or troposphere 
is the source of outliers, it will be detected as a positive outlier, since the code signal is 
delayed by the abnormality in the ionosphere or troposphere. However, this does not apply 
when the outliers are generated by multi-path. In that case, the outliers could be either 
positive or negative. 

The residual vector r  is obtained as 
    yCAIPfCxHyr )( CPCHy .                                          (39) 

If the outliers are big enough and the observation errors are small enough, the magnitude 
or norm of the residual vectors for the observation equations including the correct outliers as a 
part of the solution becomes the minimum. This could be proven as follows. 

If the observation error e  in equation (21) is zero for simplicity, the solution x  and f  
of the least square problem (38) would be the correct ones, that is, x  and f . They make R  
equal to zero, that is, the minimum of R . 

The minimum problem defined by equation (38) is solved numerically by following the 
flow as shown in Figure 1. In the figure, |_| vectorres  is the magnitude of the residual r , 

that is, ),( fxR . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Algorithm for determining outliers 
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(The constraints 0,,0,0 110 000 1qfff �  can be neglected, if not necessary.) 

4. NUMERICAL RESULTS 
The data were downloaded from the homepage of ARGN (Australian Regional GPS Network, 
http://www.ga.gov.au/bin/data_server/). Data obtained on Nov. 6, 2006 (0:00:00 GPS time) 
for station Tow2 (Townsville) are analyzed. Nine satellites, that is, 3, 6, 7, 14, 15, 16, 18, 21 
and 22 are used. 

4.1. Seriousness of Wrong Detection 
4.1.1. A Very Interesting Case 
In some cases, the conventional method can’t detect correctly even the single outlier. In an 
example shown in Table 1, six satellites were used and PRN 16 include an outlier with 
magnitude 100m. However, the magnitude of residual of PRN 16 is the smallest among the 
satellites. Furthermore, the root of sum of squares of residuals without outlier is bigger than 
that with outlier. 

Table 1. Residuals ir̂  
(No. of satellites: 6; Sat. used: 7, 15, 16(+100m), 18, 21, 22) 

Sat. No. Without outlier With outliers Note 
PRN 7 -2.30 -0.53  

PRN 15 -4.17 1.25  
PRN 16 -0.59 0.03 Include outlier 
PRN 18 -1.43 -1.76  
PRN 21 3.72 0.43  
PRN 22 4.78 0.59  

Root of sum 
of squares   

7.86 2.33 7.86>2.33 ! 

 
Matrix P  for this case is given in Table 2. The magnitude of the component 

corresponding to PRN 16 in the column corresponding to PRN 16 is 0.01 and smaller than 
those corresponding to other than PRN 18 in the column. So, the residual of PRN 16 can’t be 
the biggest, and the outlier included in PRN 16 can’t be detected by the conventional method. 

Table 2. An example of unfavorable matrix P  
 PRN 07 PRN 15 PRN 16 PRN 18 PRN 21 PRN 22 

PRN 07 0.12 0.04 0.02 0.19 -0.16 -0.21 
PRN 15 0.04 0.67 0.05 -0.36 -0.18 -0.22 
PRN 16 0.02 0.05 0.01 0 -0.03 -0.04 
PRN 18 0.19 -0.36 0 0.57 -0.17 -0.23 
PRN 21 -0.16 -0.18 -0.03 -0.17 0.24 0.3 
PRN 22 -0.21 -0.22 -0.04 -0.23 0.3 0.39 

 
In the following, we consider the reason for wrong detection of a single outlier in general. 

Since we have 
    fPPer PPˆ ,                                                          (19) 
there are two possibilities of wrong detection: 
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(1) Outlier f  is small and masked by noise e  
(2) Corresponding component in matrix P  is small in the corresponding column. 

Generally speaking, case (2) is very serious. The outlier could never be detected correctly. 

4.1.2. Dependency of Residuals on Magnitude of Outliers 
In case of multiple outliers, the correct detection by the conventional method is usually very 
difficult. In next examples, the number of satellites are nine, and the outliers are in SVs. 0, 3 
and 5 or PRN 03, 14 and 16. Dependency of residuals on magnitude of outliers is shown in 
Table 3 and Figure 2. The magnitudes of the outliers are 0, 10, 100, 1000 and 10000. When 
the magnitudes of the outliers are big, the residuals of SVs 1, 3 and 8 are big, and these 
satellite would be judged to have outliers instead of SVs. 0, 3 and 5, if we consider the 
number of the outliers is three. However, there is no reason to consider the number of the 
outliers is three. In general, we can’t decide the number of the outliers by the conventional 
method. 

Table 3. Dependency of residuals on magnitude of outliers 
(Outliers are in SVs. 0, 3 and 5) 

SV PRN Magnitude of outliers 
+0 +10 +100 +1000 +10000 

0 3 3.36 5.90 28.78 257.57 2545.89 
1 6 0.75 -2.89 -35.67 -363.51 -3641.37 
2 7 -7.27 -8.71 -21.68 -151.38 -1448.70 
3 14 5.92 11.96 66.29 609.69 6043.78 
4 15 -3.11 -3.02 -2.21 5.92 87.00 
5 16 -5.76 -7.31 -19.24 -140.53 -1353.79 
6 18 0.29 -0.11 -3.73 -39.94 -401.90 
7 21 -1.24 0.12 12.37 134.84 1359.25 
8 22 7.06 3.87 -24.91 -312.67 -3190.15 

 
Fig. 2. Residuals for various outliers 

(Outliers are in SVs. 0, 3 and 5) 

In Figure 3, components of residual due to noise e  and outlier f  are estimated. The 
residual component due to noise i)(Pe  is equal to r̂  obtained by assuming 00f . The 
residual component i)( fP  is estimated as the difference of r̂  between with and without 
outliers. Figure 3 shows clearly that even if outliers become very big, they are not correctly 
detected by the conventional method. 
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(a) i)(Pe  without outlier 

 

 
(b) Outlieri)( fP  

Fig. 3. Estimation of components of residual due to noise e  and outlier f  

The reasons for wrong detection of multiple outliers by the conventional method are 
summarized below, where we use 
    )(ˆ fePr fP ,                                                         (19) 
    00PH .                                                            (18b) 

(1) Pf  gives wrong result. 
(2) Even if Pf  gives a correct result, f  may be small and masked by noise e . 
(3) fe f  is an engen vector of P  or a linear combination of columns of H  
(4) f  is an engen vector of P  or a linear combination of columns of H  

(1) and (4) are most serious case, the outliers could never be detected. 

4.2. Details of Outlier Detection by the Conventional Method 
In the following examples, nine satellites are used. 

Observation equation (21) is now given by 
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161.072.033.0
160.021.077.0
188.007.047.0
109.098.017.0
183.010.054.0
140.057.071.0
120.069.070.0
158.005.081.0
174.065.017.0 

                            ,                                        (40) 

    T]06.724.129.076.511.392.527.775.036.3[ 710535703[y ,                   (41) 
where y  is the value when outliers don’t exist. 

The observation error is assumed to satisfy for simplicity: 

    jiji ji)( eQ .                                                         (42) 
When outliers don’t exist, |_| vectorres  is equal to 93.13 . The definition of 

|_| vectorres is given as 

   | res_vector | = 
1

0

2
N

i
ir ,                                                (43) 

where iii rorrr r̂̂  is the )1( 1i -th component of the residual vector rr r̂̂  in the 
conventional method or rr r  in the new method. 

Three cases are discussed below: 

Case 1. One outlier exists: 5100 51 SVform . 
    T]76.088.1489.537.3233.685.626.209.1449.35[ 06213[y .          (44a) 
In this case, y  is equal to r̂  through the repeated linearlization. 49.35|ˆ||| 00 3| ry  is the 
biggest, and vectorres _  is 17.87 . So, the outlier is not detected. 

Case 2. Two outlier exist: 5,3100 31 SVform . 
    T]02.1212.1595.1361.1995.929.5452.3389.4348.23[ 1342[y .           (44b) 

29.54|ˆ||| 33 5| ry  is the biggest, and the absolute value of 89.43|ˆ||| 11 4| ry  is the second 
biggest. vectorres _  is 43.53 . So, the outliers are not detected. 

Case 3. Three outliers exist: 5,3,0100 01 SVform . 
    T]91.2437.1273.324.1921.229.6668.2135.67-78.28[ 23122[y .       (44c) 

29.66|ˆ||| 33 6| ry  is the biggest, and the absolute value of 67.35|ˆ||| 11 3| ry  is the second 
biggest. 78.28|ˆ||| 00 2| ry  is the third biggest. vectorres _  is 16.90 . So, the outliers are 
not detected. 

Hence, the correct answers are not obtained in Case 1 through 3. Namely, the residual 
can’t give the correct identifications of the outliers, even in case of the single outlier in the 
above example. 

 H =



11 

Solutions for the three cases by the new method are now obtained below by using 
algorithm discussed in section 3.2. 

4.3. Details of Outlier Detection by the New Method 
In the following examples, we introduce a constraint that the outliers are positive. 

4.3.1 Solution of Case 1 ( One outlier: 5100 51 SVform ) 

(1) If 11q  is assumed, the results are shown in Table 4, and 
    ,5,34.10|_|min 0 51 iwhenvectorres  89.840 8fwhere . 
Hence, the outliers are correctly identified without constraints. 

Table 4. Search for minimum of |_| vectorres , ( 11q ). 

0i   0f  |_| vectorres  
5 84.89 10.34 
0 -67.91 21.09 
1 -43.43 47.36 
7 24.8 49.86 
3 -11.2 52.71 
4 8.62 52.92 
6 8.35 52.97 
2 -4.95 53.33 
8 -1.19 53.42 

Coordinates without outliers: 
  ,35.2091543,61.3275483,95.5054605 000 235 zyx  
  31.0)( 0 0ctd  
Coordinates with outliers: 

,12.2091513,48.3275476,50.5054536 111 235 zyx  
  92.53)( 1 5ctd  
Coordinates with outliers detected: 
  ,78.2091538,53.3275482,46.5054595 222 235 zyx  
  89.7)( 2 7ctd  
Differences of coordinates: 
  ,23.30,12.7,45.69 010101 376 dzdzdydydxdx  
  23.54)()( 01 5ctdctd  
  ,57.4,08.1,49.10 020202 411 dzdzdydydxdx  
  20.8)()( 02 8ctdctd  
The difference of coordinates between with outliers detected and without outliers is much 
smaller than the difference of coordinates between with and without outliers, and the 
precision of the positioning increases by detecting outliers. Since 0f  is obtained as 89.84  
very close to 100, the improvement of the precision is rather big. 

Since |_|min vectorres  in Table 4 is smaller than 93.13  which is the value of 
|_| vectorres  without outliers, we consider that the number of outlier q  is 1  and the 

satellite number 0i  is 5 . 

(2) If 22q  is assumed, the results are shown in Table 5.  
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Change of |_|min vectorres  by q is shown in Table 6. If the number bigger than the 
real outliers is assumed, the residual becomes very small as shown in Table 6. 

Table 5. Search for minimum of |_| vectorres , ( 22q ). 
0i  1i  0f  1f  |_| vectorres  
2 5 -14.44 86.78 3.59 
5 8 86.76 9.08 7.32 
0 5 -19.81 64.7 7.56 
3 5 7.01 87.23 8.89 
1 5 -5.59 82.71 9.93 
4 5 -2.37 85.47 10.15 
5 7 83.93 2.26 10.21 
5 6 84.65 1.63 10.25 
0 7 -66.77 21.75 12.72 
0 1 -63.62 -27.33 14.57 

… … … … … 

Table 6. Change of |_|min vectorres  by q . 
 11q  22q  33q  44q  

|_|
min

vectorres
 10.34 7.32 1.58 0.85 

4.3.2 Solution of Case 2 (Two outliers: 5,3100 31 SVform ) 

(1) If 11q  is assumed, the results are shown in Table 7, and 
    ,3,71.52|_|min 0 35 iwhenvectorres  80.880 8fwhere . 

76.40|_| 4vectorres  is smaller than 71.52 , but 03.1350 01f . So not adapted. 

Table 7. Search for minimum of |_| vectorres , ( 11q ). 

0i  0f  |_| vectorres  
1 -135.3 40.76 
3 88.8 52.71 
2 -73.28 71.72 
0 -44.94 80.89 
5 51.41 81.18 
7 25.2 84.96 
6 19.77 85.58 
8 -18.13 85.91 
4 13.55 86.40 

(2) If 22q  is assumed, the results are shown in Table 8, and 

    ,5,3,89.8|_|min 10 538 iiwhenvectorres  23.87,01.107 10 81 ffwhere . 

Hence, the outliers are correctly identified. 

Coordinates without outliers: 
  ,35.2091543,61.3275483,95.5054605 000 235 zyx  
  31.00 0dct  
Coordinates with outliers: 
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  ,50.2091495,82.3275506,84.5054573 111 235 zyx  
  66.41)( 1 4ctd  
 
 
Coordinates with outliers detected: 
  ,73.2091540,57.3275480,47.5054594 222 235 zyx  
  47.7)( 2 7ctd  

Table 8. Search for minimum of |_| vectorres . 
0i  1i  0f  1f  |_| vectorres  
3 5 107.01 87.23 8.89 
0 3 -68.42 102.24 21.02 
1 2 -122.84 -52.67 21.05 
1 7 -162.85 -38.24 32.10 
1 3 -97.28 41.38 32.91 
1 8 -153.14 28.59 34.96 
0 1 -24.66 -129.06 36.83 
1 6 -134.71 17.70 37.95 
1 4 -135.54 14.53 38.81 
2 8 -144.95 -94.19 40.11 

… … … … … 

Differences of coordinates: 

  ,85.47,22.23,12.32 010101 423 dzdzdydydxdx  
  97.41)()( 01 4ctdctd  
  ,62.2,04.3,49.11 020202 231 dzdzdydydxdx  
  78.7)()( 02 7ctdctd  

The difference of coordinates between with outliers detected and without outliers is much 
smaller than the difference of coordinates between with and without outliers, and the 
precision of the positioning increases by detecting outliers. Since 0f  and 1f  are obtained as 

01.107  and 23.87  very close to 100, the improvement of the precision is rather big. 

Since |_|min vectorres  in Table 8 is smaller than 93.13  which is the value of 
|_| vectorres  without outliers, we consider that the number of outlier q  is 2  and the 

satellite number 0i  is 3  and 5 . 

(3) If the number bigger than the real outliers is assumed, the residual becomes very small as 
shown in Table 9. 

Table 9. Change of |_|min vectorres  by q . 
 11q  22q  33q  44q  

|_|
min

vectorres
 52.71 8.89 1.58 0.85 

4.3.3 Solution of Case 3 (Three outliers: 5,3,0100 01 SVform ) 

(1) If 11q  is assumed, the results are shown in Table 10. 
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Table 10. Search for minimum of |_| vectorres , ( 11q ). 

0i  0f  |_| vectorres  
3 108.44 30.65 
1 -109.98 64.84 
0 55.06 80.89 
2 -47.4 84.27 
5 -50.45 84.60 
8 -37.56 84.81 
7 20.62 88.73 
6 -5.29 90.05 
4 -3.01 90.12 

And 
,3,65.30|_|min 0 33 iwhenvectorres  44.1080 1fwhere . 

 (2) If 22q  is assumed, the results are shown in Table 11, and 
    ,3,2,94.20|_|min 10 322 iiwhenvectorres 41.129,02.41 10 14 ffwhere . 

06.13|_| 1vectorres  is smaller than 94.20 , but 0, 10 0ff . So not adapted. 

Table 11. Search for minimum of |_| vectorres , ( 22q ). 

0i  1i  0f  1f  |_| vectorres  
1 5 -161.89 -113.44 13.06 
2 3 41.02 129.41 20.94 
0 3 31.58 102.24 21.02 
3 8 104.8 -19.8 26.22 
3 7 108.36 20.19 26.36 
3 6 110.8 -17.94 26.75 
3 5 105.26 -15.21 29.28 
1 3 -18.77 99.29 29.6 
3 4 108.93 -8.37 29.8 
0 1 75.34 -129.06 36.83 

… … … … … 

(3) If 33q  is assumed, the results are shown in Table 12, and 
    ,5,3,0,64.5|_|min 510 530 iiiwhenvectorres  
             47.67,68.106,71.80 210 618 fffwhere . 

Hence, the outliers are correctly identified. 

33.2|_| 2vectorres  is smaller than 64.5 , but 01 0f . So not adapted. 
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Table 12. Search for minimum of |_| vectorres . 

0i  1i  2i  0f  1f  2f  |_| vectorres  

0 1 3 47.34 -55.94 71.88 2.33 
0 3 5 80.71 106.68 67.47 5.64 
1 4 5 -163.98 13.3 -117.55 6.79 
1 5 7 -172.79 -110.5 -17 6.97 
1 3 5 -121.46 31 -87.33 7.74 
0 1 5 -18.33 -166.63 -133.95 11.58 
1 2 5 -158.78 -8.6 -111.1 11.83 
2 3 6 43.96 133.63 -20.62 12.07 
0 3 7 32.79 101.91 21.72 12.64 
1 5 8 -160.62 -113.35 -1.97 12.98 

… … … … … … … 

Coordinates without outliers: 
,35.2091543,61.3275483,95.5054605 000 235 zyx  

  31.0)( 0 0ctd  
Coordinates with outliers: 
  ,00.2091498,07.3275486,61.5054507 111 235 zyx  
  82.89)( 1 8ctd  
Coordinates with outliers detected: 
  ,18.2091535,26.3275475,10.5054568 222 235 zyx  
  44.27)( 2 2ctd  
Differences of coordinates: 
  ,35.45,46.2,34.98 010101 429 dzdzdydydxdx  
  13.90)()( 01 9ctdctd  
  ,17.8,35.8,85.37 020202 883 dzdzdydydxdx  
  75.27)()( 02 2ctdctd  

The difference of coordinates between with outliers detected and without outliers is smaller 
than the difference of coordinates between with and without outliers, and the precision of the 
positioning increases by detecting outliers. However, the improvement of the precision is not 
big. This may come from the rather poor estimation of 2f . The further improvement may be 
expected for Case 3. 

Since |_|min vectorres  in Table 12 is smaller than 93.13  which is the value of 
|_| vectorres  without outliers, we consider that the number of outlier q  is 3  and the 

satellite number 0i  is 0 , 3  and 5 . 

(4) If the number bigger than the real outliers is assumed, the residual becomes very small as 
shown in Table 13. 
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Table 13. Change of |_|min vectorres  by q . 
 11q  22q  33q  44q  

|_|
min

vectorres
 30.65 20.94 5.64 0.08 

4.4. Effectiveness of the New Method 
Effectiveness of the New Method is shown below through the detection of 2 outliers in 7~9 
satellites given in Table 14. The conventional method considers the outliers as a part of the 
observation errors. The new method developed in the present paper treats them as unknowns 
in the observation equations. In this example, no constraints are introduced. When the number 
of the satellites or the redundancy of the observation equations is increased, the both method 
show the higher detection rate. However, the correct detection rate by the new method is 
much higher than those by the conventional method as shown in Figure 4. 

Next example shows result of three outliers (PRN 03, 14, 16) among nine satellites (PRN 
03, 06, 07, 14, 15, 16, 18, 21, 22). As shown in Figure 5, when the magnitude of the outliers is 
100m, the correct combination of outliers (blue line: i0_3_5) is masked by a wrong 
combination (magenta line: i0_1_3). However, as the magnitude of the outliers become bigger, 
the magnitude of the residual of the correct combination becomes the smallest, and the 
outliers are correctly detected. 

Table 14. Satellites used. 
Number of satellites Satellites used 

7 PRN 07, 14, 15, 16, 18, 21, 22 
8 PRN 06, 07, 14, 15, 16, 18, 21, 22 
9 PRN 03, 06, 07, 14, 15, 16, 18, 21, 22 

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Correct detection rates of outliers 

The reasons for wrong detection of multiple outliers by the new method are summarized 
below, where we use 
    ePr NN Pˆ ,                                                            (19) 
    00NN HP , where H N  = [H C].                                       (18b) 
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(1) If magnitude of outliers f  is small, the outliers are masked by noise e . 
(2) Noise e  is an eigen-vector of NP  or a linear combination of columns of NH . 

However, correct specification of satellites with outliers is possible when item (1) applies, if 
we can lower the magnitude of noise. For the purpose, we need a low noise receiver. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Masking of correct detection by noise 

If the number of satellites is big enough and we have sufficient redundancy in LSM, we 
can avoid the wrong detection as shown in Figure 4. When the number of satellites is not 
enough, introduction of a constraint is very effective. The assumption that the outlier is 
positive is not always correct, since the multi-path error could be positive or negative. If the 
receiver is on the ground, map matching would give a reasonable constraint. 

5. CONCLUSIONS 
The properties of the residuals obtained by the least square procedures for solving the 

observation equations are discussed. Mathematically, the outliers can’t be determined by the 
conventional method or by checking the residuals alone. For example, some kind of outliers 
make residual zero. So, this kind of outliers may not be detected by the conventional method 
or by checking the residuals alone. 

The following results are obtained through the present discussion: 

(1) In the present paper, the number of the outliers and the magnitude of outliers are also
unknowns in the observation equation. This strengthens the correct detection of the 
outliers and also makes it possible to estimate more precise positioning by removing the 
outliers. 

(2) The satellites including outliers are identified correctly even when the redundancy of the 
observation is not enough, if a constraint such that the outliers are positive is introduced. 

(3) However, the outliers due to multi-path could be positive or negative. So, when the 
redundancy of the observation is not enough, there is a possibility that these outliers can’t 
be solved on the basis of the observation equation alone. 

(4) The estimated magnitude of the outliers itself is a little bit poor. 
(5) If the outliers are identified correctly, the coordinates of the receiver are estimated much 

more precisely than those estimated without identifying the outliers. 
(6) In order to reduce the masking effects by noise, a low-noise receiver is required. 
(7) The present approach alone may not be sufficient for a highly reliable RAIM. The 

detection of outliers from the sequence of the observation signals should also be 
investigated. A combination with INS would also increase the reliability. 
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APPENDIX A. DETECTION OF THE OUTLIERS FROM THE RESIDUAL r̂  

If the number of the outliers is small and the redundancy 44N  is big enough, the 
possibility that r̂  is zero may be small. 

From equation (19), the expectation and variance of r̂ are given as 
    Pfr P)ˆ(E , TD PPQrQ er PD )ˆ(ˆ ,        (A.1) 

and rQ ˆ  is singular, since P  is singular. 
If we assume the outlier occurs at the i-th observation and express f  as 

    fcf c ,                                 (A.2) 
where the j-th element Njc j ,,2,1, �1  of vector c  is equal to 1 when ij i  and 0  
otherwise, and f  is the scale of the outlier. Equation (19) is rewritten as 
    PePcr PP fˆ .                           (A.3) 

The least square solution f~  of f  is obtained by solving 
    )(~m i n)~(~ fRfR

f
m ,            

(A.4a) 
    )ˆ()ˆ()(~ fffR T PcrPcr PP( ,         (A.4b) 
since the variance-covariance matrix of r̂  is singular. f~  may be solved as 

    
PcPc
rPc

TT

TT

f
ˆ~ .                           (A.5) 

Hence, we have 

    
PcPPQPc

rPc

e )(

ˆ~

~ TTT

TT

fQ
f ,            (A.6) 

where 
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2~
2
~

)(
)(

)~(
PcPc

PcPPQPc e
TT

TTT

ff fDQ
c

DQ2
~f .   (A.7) 

Equation (A.6) may be used for detection of the outlier, since ff ~
~

f~  follows the standard 
normal distribution )1,0(N  when the outlier does not exists. If the outlier exists, 

0)~( ~ 0ffE ~f .

When qiii ,,, 21 � -th measurements have outliers qfff ,,, 21 � , equation (19) may be 
written as 

PePCfr PPˆ ,                  (A.8) 
where C  is a matrix of order qN q  whose qkkik ,,2,1),,( �1  elements are equal to 1 
and the other ones are 0, and T

qfff ][ 21 �[f  is an unknown vector of order 11q .

The least square solution f~  of f  is obtained by solving 

)(~m i n)~(~ ff RR
f

m              

)~ˆ()ˆ()(~ fPCrfPCrf PP( TR ,         (A.9b) 
since the variance-covariance matrix of r̂  is singular. f~  may be solved as 

rPCPCPCf ˆ][~ 1 TTTT 1[ .    (A.10) 
The variance may be written as 

11
~ ][][)~( 11[ PCPCPCPPQPCPCPCfQ ef

TTTTTTTD .   (A.11) 
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