COCOS: A NEW SINEX COMBINATION SOFTWARE

M. Lytvyn

Main Astronomical Observatory, Ukrainian Academy of Sciences, 27, Ac. Zabolotny Str., 03680, Kiev, UKRAINE e-mail: misha@mao.kiev.ua

ABSTRACT. A simple and flexible algorithm for combination of space geodesy observations is presented. The CoCoS software that implements this algorithm is described in details. The combined GPS–VLBI solution for the CONT02 VLBI experiment data and observations from co–located GPS sites is obtained and discussed.

Keywords: GPS, VLBI, IERS, combined solution.

1. INTRODUCTION

Modern space geodesy techniques allow to estimate positions of observing stations (realization of Terrestrial Reference Frame), radio sources positions (realization of Celestial Reference Frame), and Earth orientation parameters (EOPs) — transformation parameters between Terrestrial and Celestial Frames. Each technique gives own realization of reference frames, EOP estimations and has some advantages and weaknesses. It is considered the most reliable estimation can be achieved combining observation information from the various space geodesy techniques and on–ground geodetic surveys (Rothacher, 2002).

Currently there are some combined products maintained by International Earth Rotation and Reference Systems Service (IERS, http://www.iers.org), such as International Terrestrial Reference Frame (ITRF, Boucher et al., 2004), EOPs series. The only product that obtained using full variance–covariance information is ITRF (Gambis, 2004; Bizouard, 2008).

Recently at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (MAO) an alternative combination algorithm was developed. This algorithm was implemented in CoCoS (**Construct Combined Solution**) software.

2. ALGORITHM DESCRIPTION

Assume that we have n initial solutions from Data Analysis Centers in SINEX format (http://www.iers.org/documents/ac/sinex/sinex_v202.pdf), and local tie information for sites with collocated techniques. The combined solution can be obtained using the following steps.

1. The constraints imposed in an initial solution should be removed:

$$\mathbf{N}_{i}^{free} = \mathbf{N}_{i} - \mathbf{N}_{i}^{constr},$$

where \mathbf{N}_{i}^{free} — constraint free normal equations matrix for i–th solution, \mathbf{N}_{i} — initial solution normal equations matrix for i–th solution, \mathbf{N}_{i}^{constr} — constraints normal equation matrix for i–th solution, $i = 1, \ldots, n$.

2. Unconstrained systems should be brought to the equal a priori values for common parameters. The following unknowns types can be taked as common parameters: station positions, station velocities and EOPs (pole coordinates and their rates, length of day, UT1 estimations). At this step it is possible to accomplish pre-elimination of uninterested parameters to reduce normal equations systems dimensions (Dach et al., 2007).

Let us obtain main equation for this step. The observation equations for initial solution can be expressed as:

$$\mathbf{y_1} = \mathbf{A_1}\mathbf{x_1} + \mathbf{e_1}; \mathbf{y_2} = \mathbf{A_2}\mathbf{x_2} + \mathbf{e_2}; \vdots \\ \mathbf{y_n} = \mathbf{A_n}\mathbf{x_n} + \mathbf{e_n},$$
 (1)

where $\mathbf{y_1}$,	$\mathbf{y_2}, \ldots,$	$\mathbf{y_n}$	 observations vectors,
$\mathbf{A}_{1},$	$\mathbf{A}_2, \ldots,$	\mathbf{A}_n	 design matrices for observation equations system,
$\mathbf{x_1},$	$\mathbf{x_2}, \ldots,$	$\mathbf{x}_{\mathbf{n}}$	 vectors of estimated parameters,
$\mathbf{e_1},$	$e_2, \ \ldots,$	$\mathbf{e_n}$	 vectors of observation errors.

Solving observation (1) equations by least–square method we can obtain normal equation systems:

$$\begin{aligned}
 N_1 \Delta \mathbf{x_1} &= \mathbf{b_1}; \\
 N_2 \Delta \mathbf{x_2} &= \mathbf{b_2}; \\
 \vdots \\
 N_n \Delta \mathbf{x_n} &= \mathbf{b_n},
 \end{aligned}$$
(2)

where	$\mathbf{N}_1,$	$\mathbf{N}_2,$	\ldots, \mathbf{N}_n		normal equations design matrices,
	$\Delta x_{1},$	Δx_2 ,	$\ldots, \Delta \mathbf{x}$	n —	estimated corrections to a priori values,
	$\mathbf{b_{1}},$	$\mathbf{b_2},$	\ldots, b_n		right hand side vector of normal equations system.

The equation systems (2) and (1) are connected each other by the following formulae:

$$\begin{aligned} \mathbf{N}_i &= \mathbf{A}_i^T \mathbf{P}_i \mathbf{A}_i; \\ \mathbf{b}_i &= \mathbf{A}_i^T \mathbf{P}_i \mathbf{y}_i, \end{aligned}$$
 (3)

where \mathbf{P}_i — weight matrices, $i = 1, \ldots, n$,

The combination has the sense if there are some common parameters in vectors \mathbf{x}_i . In this case, we can write the following connection equations:

$$\mathbf{x}_{\mathbf{i}} = \mathbf{B}_{\mathbf{i}}\mathbf{x}_{\mathbf{0}} + \mathbf{c}_{\mathbf{i}},\tag{4}$$

where \mathbf{x}_0 — observables vector that contains common and uncommon parameters from the vectors \mathbf{x}_i . Matrix \mathbf{B}_i changes parameter order and vector \mathbf{c}_i accounts for differences in a priori values for common parameters or local ties for station positions. For more details about forming \mathbf{x}_0 , \mathbf{B}_i and \mathbf{c}_i cf. (Lytvyn, 2008).

Standard deviations for local ties should be incorporated in standard deviations for corresponding parameters:

$$\sigma = \sqrt{\sigma_{tie}^2 + \sigma_{initial}^2}$$

Substituting (4) into (1) we can obtain normal equations system with \mathbf{x}_0 .

$$\mathbf{y_1} - \mathbf{A_1 c_1} = \mathbf{A_1 B_1 x_0} + \mathbf{e_1}; \mathbf{y_2} - \mathbf{A_2 c_2} = \mathbf{A_2 B_2 x_0} + \mathbf{e_2}; \vdots \\ \mathbf{y_n} - \mathbf{A_i c_n} = \mathbf{A_n B_n x_0} + \mathbf{e_n}.$$
 (5)

The new observation equations system (5) can be rewritten in the following form:

$$\begin{pmatrix} \mathbf{y_1} - \mathbf{A_1 c_1} \\ \mathbf{y_2} - \mathbf{A_2 c_2} \\ \vdots \\ \mathbf{y_n} - \mathbf{A_n c_n} \end{pmatrix} = \begin{pmatrix} \mathbf{A_1 B_1} \\ \mathbf{A_2 B_2} \\ \vdots \\ \mathbf{A_n B_n} \end{pmatrix} \mathbf{x_0} + \begin{pmatrix} \mathbf{e_1} \\ \mathbf{e_2} \\ \vdots \\ \mathbf{e_n} \end{pmatrix}.$$
(6)

Solving equations (6) we can obtain a normal equations system:

$$\mathbf{N}' \Delta \mathbf{x_0} = \mathbf{b}',\tag{7}$$

where

$$\mathbf{N}' = \begin{pmatrix} \mathbf{A}_{1}\mathbf{B}_{1} \\ \mathbf{A}_{2}\mathbf{B}_{2} \\ \mathbf{A}_{3}\mathbf{B}_{3} \\ \vdots \\ \mathbf{A}_{n}\mathbf{B}_{n} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \mathbf{P}_{1} & 0 & 0 & \dots & 0 \\ 0 & \mathbf{P}_{2} & 0 & \dots & 0 \\ 0 & 0 & \mathbf{P}_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & \mathbf{P}_{n} \end{pmatrix} \begin{pmatrix} \mathbf{A}_{1}\mathbf{B}_{1} \\ \mathbf{A}_{2}\mathbf{B}_{2} \\ \mathbf{A}_{3}\mathbf{B}_{n} \\ \vdots \\ \mathbf{A}_{n}\mathbf{B}_{n} \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} \mathbf{P}_{1} & 0 & 0 & \dots & 0 \\ 0 & \mathbf{P}_{2} & 0 & \dots & 0 \\ 0 & 0 & \mathbf{P}_{3} & \dots & 0 \\ 0 & 0 & \mathbf{P}_{3} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & \mathbf{P}_{n} \end{pmatrix} \begin{pmatrix} \mathbf{y}_{1} - \mathbf{A}_{1}\mathbf{c}_{1} \\ \mathbf{y}_{2} - \mathbf{A}_{2}\mathbf{c}_{2} \\ \vdots \\ \mathbf{y}_{n} - \mathbf{A}_{n}\mathbf{c}_{n} \end{pmatrix}.$$
(9)

Accomplishing multiplication in (8)–(9) and accounting for (3) we are coming to the following equations:

$$\mathbf{N}' = \sum_{i=1}^{n} \mathbf{B}_i^T \mathbf{N}_i \mathbf{B}_i; \tag{10}$$

$$\mathbf{b}' = \sum_{i=1}^{n} \mathbf{B}_{i}^{T} \mathbf{b}_{i} - \sum_{i=1}^{n} \mathbf{B}_{i}^{T} \mathbf{N}_{i} \mathbf{c}_{i}.$$
 (11)

And now we can obtain common normal equations system

$$\left(\sum_{i=1}^{n} \mathbf{B}_{i}^{T} \mathbf{N}_{i} \mathbf{B}_{i}\right) \Delta \mathbf{x}_{0} = \sum_{i=1}^{n} \mathbf{B}_{i}^{T} \mathbf{b}_{i} - \sum_{i=1}^{n} \mathbf{B}_{i}^{T} \mathbf{N}_{i} \mathbf{c}_{i}.$$
 (12)

3. Impose constraints to fix solution reference frame.

There are several ways to impose constraints. The simple one is to set positions of two stations a priori. This approach is used in SLR. The reference frame can be also fixed by setting a priori standard deviations for set of stations positions. This approach is used for processing GPS data from regional networks. And in the case of global networks it is possible to use No–Net–conditions (No–Net translation and No–Net–rotation) (Brockmann, 1997). This method is widely used in processing VLBI data.

Imposing constraints means adding fake observations to normal equation system:

$$\mathbf{N}^{fixed} = \mathbf{N}^{free} + \mathbf{N}^{constr}; \tag{13}$$

$$\mathbf{b}^{\mathbf{fixed}} = \mathbf{b}^{\mathbf{free}} + \mathbf{b}^{\mathbf{constr}}.$$
 (14)

2. SOFTWARE DESCRIPTION

CoCoS software is an implementation of algorithm described above. This software uses solutions in SINEX format provided by IERS Analysis Centers and local tie information (local ties and their standard deviations) for station with collocated techniques.

The main features of CoCoS software are:

- support SINEX formats: 2.01 (IERS official standard), 2.10 (Goddart Space Flight Center (GSFC) modification);
- graphical user interface (GUI) written using Qt3 widgets library (http://trolltech.com/products/qt/);
- implementation of linear algebra algorithms: matrix object with dynamic memory allocation, LU-decomposition for determinant computation and matrix inverse, Householder transformation for solving least square problems, basic matrix operations;
- local tie verification using tolerance interval;
- possibility to exclude/include any parameter type from the common parameters list.

CoCoS works under Linux operation system but after porting GUI part to Qt4 software can be compiled under Windows and MacOS. CoCoS was written using C++ programming language. This allowed to create modular and easily extendable system. The software implements fast and low cost algorithms for matrix computations with dynamic memory allocation. That means that CoCoS need not to be recompiled to dealt with very large equation systems. The amount of PC memory is only limit for a maximum unknown parameters number. All elementary matrix operations are optimized for parallel computing using OpenMP programming interface (http://openmp.org). It is especially useful at multiprocessor systems such as clusters or grids.

Main Options Results Residuals Helmert		Main	Options	Results	Residuals	Helmert			
GPS SINEX: [/home/misha/dev/cocos1/data_new/mao11894.snx	Browse	Con	nmon paran	neters					
SLR SINEX:	Browse	E H	ole X			e X rate		⊻ ×	
VLBI SINEX /nome/misha/dev/cocos1/data_new/02OCT24XA_dsfd0002.snx	Browse	₩ P	ole Y			e Y rate		V Y	
INFO. Reading MATRIX_APRIORIDIOCK	EDV.		IT1		⊡ LOE	2		Ζ	
INFO. Processing file /home/mishal/dev/cocos1/data_new/02OCT24XA_gsfd0002.snx INFO. Reading STIE/ID block INFO. Reading SOLUTION/EPOCHS block INFO. Reading SOLUTION/EPOCHS block INFO. Reading SOLUTION/EPOCHS block INFO. Reading SOLUTION/EPOCHS block INFO. Reading SOLUTION/ESTIMATE block INFO. Reading SOLUTION/MATRX, ESTIMATE block INFO. Reading SOLUTION/DECOMPOSED_NORMAL_MATRX block (CALC/SOLV INFO. Reading SOLUTION/DECOMPOSED_NORMAL_VECTOR block (CALC/SOLV INFO. Reading SOLUTION/DECOMPOSED_NORMAL_VECTOR block (CALC/SOLV INFO. Reading SOLUTION/DECOMPOSED_NORMAL_VECTOR block (CALC/SOLV INFO. Inconstrained NEG four- nothing todol WARN: Big difference between solution epochs! (1 days)	E specific) /E specific)		put level — nfo Debug		Helme V Shi V Rol V Sci	ert paramet ifts tations ale factor	ers	O User	g scheme Uniform User weights GPS 1 E-02 VLBI 1 E-02 SLR 1 E-02
INFO. Weights for initial solutions are: GPS = 1; VLBI= 1; SLR = 1; INFO. Checking for common parameters and local ties for consistency INFO. File with local ties opened INFO. Set tolerance for local tie to 0.5 m INFO. Set tolerance for local ties to 0.5 m INFO. Common parameters are: WES2 7209 STAX; 28 → 19 WES2 7209 STAY; 29 → 20	×	Loca	Il tie toleran	Ce		[500mm		
O Write output to SINEX file: //cocos snk O Batch file: //batch.bd	rocessinfo	Maxi	mum differe	ance betwe	sen solution e	poens [ouays		

Fig. 1. CoCoS main window

								2 10
Main	Options	Results	Residuals H	lelme	ert			
No.	Site	Parameter	Value		Unit	Std.	Flag	
15	/331	STAZ	6237766.1	1285	m	0.00091		
16	7213	STAX	3370605.9	9599	m	0.00014	C	
17	7213	STAY	711917.5	5665	m	0.00015	С	
18	7213	STAZ	5349830.8	3204	m	0.00035	C	
19	7209	STAX	1492206.4	1966	m	0.00190	С	
20	7209	STAY	-4458130.5	5297	m	0.00723	С	
21	7209	STAZ	4296015.5	5560	m	0.00186	C	
22	7224	STAX	4075539.7	7934	m	0.00464	С	
23	7224	STAY	931735.3	3583	m	0.00194	С	
24	7224	STAZ	4801629.4	1178	m	0.00033	С	
25	10000	XPC	134.7	7830	mas	0.01943	С	
26		XPOR	-3.8	3723 1	masD	0.00077		
27		YPC	159.1	1507	mas	0.01208	С	
28		YPOR	-1.0	0630 i	masD	0.00075		
29	-	UT1	-32246.4	4151	ms	0.00029		
30		LOD	0.2	2763	ms	0.00160		
31		NUT LN	I -17692.1	1912	mas	0.00050		
32		NUT OF	3284.7	7931	mas	0.00535		
33	MAD2	STAX	4849202.4	4702	m	0.00056		
34	MAD2	STAY	-360328.9	9914	m	0.00072		
35	MAD2	STAZ	4114913.1	1853	m	0.00099		
36	GOUG	STAX	4795578.6	6264	m	0.00103		
37	GOUG	STAY	-835299.4	1290	m	0.00125		
38	GOUG	STAZ	-4107634.0	0135	m	0.00172		
39	ASC1	STAX	6118526.0	0591	m	0.00175		
40	ASC1	STAY	-1572344.7	7294	m	0.00117		
41	ASC1	STA7	.876451.1	1243	m	0.00046		-

ain	Options	Results	Re	siduals	Helr	nert			
0.	GPS-TIES	VLBI		dX, m		dY, m		dZ, m	
1	WES	2 7	209	-0.	0137		0.0153	-0.0156	
2	ALG	D 1	282	-0.	8000		0.0261	-0.0166	
3	FAI	२ ा	225	0.	0272		0.0403	-0.0271	
4	HRAC	D 7	232	-0.	0174	2	0.0261	0.0186	
5	WTZ	R 1	224	-0.	0003		0.0056	-0.0070	
6	ONS	A 7	213	-0.	0113		0.0037	-0.0094	

Fig. 2. CoCoS options tab

0

^

-

Fig. 3. CoCoS results tab Fig. 4. CoCoS residuals tab

Aain Options Resul	ts Residuals	Helmert	
GPS-TIES (297/2)>	VLBI (297/2)		
Parameter	Value	St. dev.	
Tx shift, m	0.003	0.026	
Ty shift, m	-0.011	0.026	
Tz shift, m	0.010	0.026	
Scale, mm/km	0.0026297	409 0.0002074498	
Rx rotation, "	-0.00052	0.00006	
Ry rotation, "	0.00032	0.00004	
Rz rotation, "	-0.00066	0.00007	
Residuals after transform	nation, m		
St1. St2. dX d	Y dZ		
WES2 7209 0.001	-0.013 -0.004	4	
ALGO 7282 0.011	-0.005 -0.004	4	
FAIR 7225 0.020	0.004 -0.010		
HRAO 7232 -0.006	-0.007 0.03	5	
WTZR 7224 0.003	-0.002 0.024	4	
ONSA 7213 -0.010	-0.008 0.02	1	
Mean residuals is:			
0.000 0.005	0.040		
0.003 -0.005	0.010		

Fig. 5. CoCoS Helmert parameters tab

3. USING COCOS

To create combined solution with CoCoS user needs to have two or more initial solutions with some common parameters at the same epoch. It is desirable (but not necessary) to have local ties and their standard deviations for sites with collocated techniques. User should put names of input SINEX files into according lines at CoCoS main window (Fig. 1). If user needs to process multiple files, there is a possibility to make batch processing. After that user should choose desirable parameters in options tab (Fig. 2). When all about is done processing can be started by pushing start button from toolbar. Once processing has been finished, the result can be seen at results tab (Fig. 3). User can check initial solutions agreement by reviewing the residuals and Helmert transformation parameters in according tabs (Fig. 4–5). Finally combined solution can be stored in SINEX format.

COMBINED SOLUTION FOR CONT02 EXPERIMENT

For CoCoS software it **GPS-VLBI** testing was decided to obtain comgeodetic experiment VLBI observations from CONT02 bined solution using (http://ivs.nict.go.jp/mirror/program/cont02/) and GPS observations from collocated sites. The eight VLBI stations participated in CONT02: Ny Alesund, Kokee Park, Gilmore Creek, Algonquin, Westford, Wettzell, HartRAO, Onsala. The last six of them are the stations with known local ties to GPS stations (Boucher et al., 2004).

Fig. 6. Observing network

Fig. 9. Time series for Wettzell Z coordinate

Solution provided by GSFC was taken as initial solution. The initial GPS solution was obtained at MAO using GAMIT GPS processing software ver.10.1 (King & Bock, 2003). At first solution for eight GPS stations collocated with the CONT02 VLBI stations was obtained. Processing strategy is described in details in (Lytvyn, 2005). To fix reference frame for GPS solution it was combined with global solution of Scripps Institution of Oceanography Analysis Center (SIO) applying No–Net–conditions. The resulting stations configuration in GPS solution can be found at Fig. 6. The combined solution was calculated for every day of the CONT02 experiment. Estimated coordinates of station Wettzell are shown at Fig. 7–9. Analyzing coordinate time series it can be concluded that all solutions are agree each other at their standard deviations level.

¹red solid line is OX shift, green dashed line — OY shift, blue dotted line — OZ shift ²red solid line is OX rotation, green dashed line — OY rotation, blue dotted line — OZ rotation

Seven Helmert transformation parameters were computed to estimate differences between initial and combined solutions. These parameters are shown at Fig. 10–15. The translations between initial systems are at the same degree as local ties standard deviations. Rotations between systems are rather small and scale factor change for the case "VLBI — Combined system" is smaller than for the case "VLBI — GPS - local ties".

5. CONCLUSIONS

This paper presents the simple and flexible algorithm for obtaining combined solution using observations of space geodesy techniques. Also algorithm implementing software described in details. The proposed approach has some advances and limitations.

The main advances of algorithm are:

- ability to obtain combined solution even if there are no any available local ties;
- possibility to include/exclude any type of unknown parameters (station coordinates, pole coordinates and their rates, length of day, and UT1 estimations) in common parameters list;
- this method rather formal and can be used for combination any equation systems with common parameters.

Besides, method used for ITRF computation requires full variance–covariance information for local ties surveys in SINEX format. And according to (Altamimi, 2005) there are proper local tie SINEX files only for all Australian co–location sites. Proposed method needs only local tie values and their standard deviations.

From the other hand there are some limitations of proposed algorithm:

- the method is oriented on combination of simultaneous observations;
- there is no reliable weighting procedure for initial solutions.

REFERENCES

- Altamimi Z. (2005) ITRF and Co-location Sites, Proc. IERS Workshop on site colocation. eds. Richter B., Dick W., Schwegmann W., IERS Technical Note 33, pp. 8– 15.
- Bizouard C. (2008) Combination of EOP observations from different techniques, Proc. Journèes "Systèmes de référence spatio-temporels" and X. Lohrmann-Kolloquium, Dresden, Germany, in press.
- Boucher C., Altamimi Z., Scillard P., Feissel–Vernier M. (2004) The ITRF2000, *IERS Technical Note 31*, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.
- Brockmann E. (1997) Combination of Solutions for Geodetic and Geodynamic Application of the Global Positioning System (GPS): Ph.D Dissertation, Bern, 211 p.
- Dach R., Hugentobler U., Frider P., Meindl M. (Eds.) (2007) Bernese GPS Software Version 5.0, Bern, Stampfli Publishing AG, 612 p.
- Gambis D. (2004) Monitoring Earth orientation using space–geodetic techniques: state– of–art and prospective, *Journal of Geodesy*, Vol. 78, No. 4–5, pp. 295–303.
- King R., Bock Y. (2003) Documentation for the GAMIT GPS Analysis Software, Boston, Massachussets Institute of Technology.
- Lytvyn M. (2005) The comparing of processing of the Ukrainian Pernanent GPS Network data with GAMIT/GLOBK and MAO GPS Local Analysis Centre outputs, *Space Science and Technology*, Vol. 11, No. 5/6, pp. 56–63 (in Ukrainian).
- Lytvyn M. (2008) A method for obtaining combined solution from modern space geodesy technique observations, *Kinematics and Physics of Celestial Bodies*, in press.
- Rothacher M. (2002) Combination of Space–Geodetic Techniques, Proc. IVS 2002 General Meeting, eds. Vandenberg N., Baver K., Tsukuba, Japan, pp. 33–34.