Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

Open access

Abstract

The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

[1] Muszynski T. Kozieł S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 41-58, DOI:10.1515/aoter-2016-0019.

[2] Muszynski T., Andrzejczyk R.: Heat transfer characteristics of hybrid microjet - Microchannel cooling module. Appl. Therm. Eng. 93(2016), 1360-1366, DOI:10.1016/j.applthermaleng.2015.08.085.

[3] Muszynski T., Andrzejczyk R.: Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers. Appl. Therm. Eng. 100(2016), 105-113, DOI:10.1016/j.applthermaleng.2016.01.120.

[4] Rozzi S., Massini R., Paciello G., Pagliarini G., Rainieri S., Trifiro A.: Heat treatment of fluid foods in a shel l and tube heat exchanger: Comparison between smooth and helical ly corrugated wal l tubes. J. Food Eng. 79(2007) 249-254, DOI:10.1016/j.jfoodeng.2006.01.050.

[5] Jayakumar J.S., Mahajani S.M., Mandal J.C., Vijayan P.K., Bhoi R.: Experimental and CFD estimation of heat transfer in helical ly coiled heat exchangers. Chem. Eng. Res. Des. 86(2008), 221-232, DOI:10.1016/j.cherd.2007.10.021.

[6] Berger S.A., Talbot L., Yao L.S.: Flow in curved pipes. Annu. Rev. Fluid Mech. 15(1983), 461-512.

[7] Kakaç S., Shah R.K., Aung W.: Handbook of single-phase convective heat transfer. Wiley New York et al., 1987.

[8] Naphon P., Wongwises S.: A review of flow and heat transfer characteristics in curved tubes. Renew. Sustain. Energy Rev. 10 (2006), 463-490, DOI:10.1016/ j.rser.2004.09.014.

[9] Lin C.X., Zhang P., Ebadian M.A.: Laminar forced convection in the entrance region of helical pipes. Int. J. Heat Mass Transf. 40(1997), 3293-3304.

[10] Kumar V., Faizee B., Mridha M., Nigam K.D.P.: Numerical studies of a tube-in- tube helical ly coiled heat exchanger. Chem. Eng. Process. Process Intensif. 47(2008), 2287-2295.

[11] Conte I., Peng X.F.: Numerical investigations of laminar flow in coiled pipes. Appl. Therm. Eng. 28(2008), 423-432.

[12] Patankar S.V., Pratap V.S., Spalding D.B.: Prediction of laminar flow and heat transfer in helical ly coiled pipes. J. Fluid Mech. 62(1974), 539-551.

[13] Jamshidi N., Farhadi M., Ganji D.D., Sedighi K.: Experimental analysis of heat transfer enhancement in shel l and helical tube heat exchangers. Appl. Therm. Eng. 51(2013), 644-652, DOI:10.1016/j.applthermaleng.2012.10.008.

[14] Xin R.C., Awwad A., Dong Z.F., Ebadian M.A.: An experimental study of single-phase and two-phase flow pressure drop in annular helicoidal pipes. Int. J. Heat Fluid Flow. 18(1997), 482-488.

[15] Petrakis M.A., Karahalios G.T.: Exponential ly decaying flow in a gently curved annular pipe. Int. J. Non. Linear. Mech. 32(1997), 823-835.

[16] Petrakis M.A., Karahalios G.T.: Fluid flow behaviour in a curved annular conduit. Int. J. Non. Linear. Mech. 34(1999), 13-25.

[17] Di Liberto M., Ciofalo M.: A study of turbulent heat transfer in curved pipes by numerical simulation. Int. J. Heat Mass Transf. 59(2013), 112-125.

[18] Moawed M.: Experimental study of forced convection from helical coiled tubes with different parameters. Energy Convers. Manag. 52(2011), 1150-1156.

[19] Designing_Helical_Coil_Heat Exgr_1982.pdf.

[20] Ankanna B.C., Reddy B.S.: Performance analysis of fabricated helical coil heat exchanger. Int. J. Eng. Res. 3(2014), Iss. 1, 33-39.

[21] Kast W., Gaddis E.S., Wirth K.-E., Stichlmair J.: L1 Pressure Drop in Single Phase Flow. In: VDI Heat Atlas, Springer, 2010, 1053-1116.

[22] Brauer H.: Strömungswiderstand und Wärmeübergang bei quer angeströmten Wärmeaustauschern mit kreuzgitterförmig angeordneten glatten und berippten Rohren. Chemie Ing. Tech. 36 (1964) 247-260, DOI:10.1002/cite.330360314 (in German).

[23] Bell K.J.: Delaware Method for Shel l-side Design. Taylor & Francis, New York 1988.

[24] Achenbach E.: Investigations on the flow through a staggered tube bundle at Reynolds numbers up to Re = 107. Warme-Und Stoffubertragung. 2(1969), 47-52.

[25] Lazova M., Huisseune H., Kaya A., Lecompte S., Kosmadakis G., De Paepe M.: Performance evaluation of a helical coil heat exchanger working under supercritical conditions in a solar organic Rankine cycle instal lation. Energies. 9(2016), 432, DOI:10.3390/en9060432.

[26] Jo D., Al-Yahia O.S., Altamimi R.M., Park J., Chae H.: Experimental investigation of convective heat transfer in a narrow rectangular channel for upward and downward flows. Nucl. Eng. Technol. 46(2014), 2, 195-206, DOI:10.5516/NET.02.2013.057.

[27] Hewitt G.F., Shires G.L., Bott T.R.: Process Heat Transfer. CRC press Boca Raton, FL, 1994.

[28] Muszynski T.: Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Appl. Therm. Eng. (2017), DOI:10.1016/j.applthermaleng.2017.01.021.

[29] Laskowski R.: The concept of a new approximate relation for exchanger heat transfer effectiveness for a cross-flow heat exchanger with unmixed fluids. J. Power Technol. 91(2011), 93-101.

[30] Cieśliński J.T., Fiuk A., Typiński K., Siemieńczuk B.: Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations. Arch. Thermodyn. 37(2016), 3, 19-29, DOI:10.1515/aoter-2016-0017.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 246 246 18
PDF Downloads 139 139 20