Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

Open access

Abstract

Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

[1] Cengel Y.A., Boles M.A.: Thermodynamics: An Engineering Approach, McGraw-Hill, 2015.

[2] Kandlikar S.G.: Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators. Heat Trans. Eng. 23(2002), 5–23.

[3] Taler D.: Mathematical modeling and control of plate fin and tube heat exchangers. Energy Convers. Manag. 96(2015), 452–462 (DOI:10.1016/j.enconman.2015.03.015).

[4] Hepbasli A., Kalinci Y.: A review of heat pump water heating systems. Renew. Sustain. Energy Rev. 13(2009), 1211–1229 (DOI:10.1016/j.rser.2008.08.002).

[5] Mikielewicz D., Muszyński T., Mikielewicz J.: Model of heat transfer in the stagnation point of rapidly evaporating microjet. Arch. Thermodyn. 33(2013), 1, 139–152.

[6] Mikielewicz D., Jakubowska B.: Prediction of flow boiling heat transfer coefficient for carbon dioxide in minichannels and conventional channels. Arch. Thermodyn. 37(2016), 2, 89–106.

[7] Gunnasegaran P., Shuaib N.H., Abdul Jalal M.F., Gunnasegaran P., Shuaib N.H., Abdul Jalal M.F.: The effect of geometrical parameters on heat transfer characteristics of compact heat exchanger with louvered fins. ISRN Thermodyn. 2012 (2012) 1–10 (DOI:10.5402/2012/832708).

[8] Wang C.-C. Lee, W.-S., Sheu W.-J.: A comparative study of compact enhanced fin-and-tube heat exchangers. Int. J. Heat Mass Transf. 44(2001), 3565–3573. doi:10.1016/S0017-9310(01)00011-4.

[9] Zhang X., Tafti D.: Flow efficiency in multi-louvered fins. Int. J. Heat Mass Transf. 46(2003), 1737–1750 (DOI:10.1016/S0017-9310(02)00482-9).

[10] Dong J., Chen J., Chen Z., ZhangW., Zhou Y.: Heat transfer and pressure drop correlations for the multi-louvered fin compact heat exchangers. Energy Convers. Manag. 48(2007), 1506–1515 (DOI:10.1016/j.enconman.2006.11.023).

[11] Xia Y., Zhong Y., Hrnjak P.S., Jacobi A.M.: Frost, defrost, and refrost and its impact on the air-side thermal-hydraulic performance of louvered-fin, flat-tube heat exchangers. Int. J. Refrig. 29(2006), 1066–1079 (DOI:10.1016/j.ijrefrig.2006.03.005).

[12] Kim S.Y., Paek J.W., Kang B.H.: Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger. J. Heat Transfer. 122(2000), 572 (DOI:10.1115/1.1287170).

[13] Ameel B., Degroote J., Huisseune H., De Jaeger P., Vierendeels J. et al.: Numerical optimization of louvered fin heat exchanger with variable louver angles. J. Phys. Conf. Ser. 395(2012), 12054 (DOI:10.1088/1742-6596/395/1/012054).

[14] Leifsson L., Koziel S.: Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress. J. Comput. Sci. 10(2015), 45–54 (DOI:10.1016/j.jocs.2015.01.003).

[15] Koziel S., Ciaurri D.E., Leifsson L.: Surrogate-based methods. Stud. Comput. Intell. 356(2011), 33–59 (DOI:10.1007/978-3-642-20859-1_3).

[16] Koziel S., Ogurtsov S., Leifsson L.: Knowledge-based response correction and adaptive design specifications for microwave design optimization. In: Procedia Comput. Sci., 2012: 764–773 (DOI:10.1016/j.procs.2012.04.082).

[17] Hsieh C.T., Jang J.Y.: 3-D thermal-hydraulic analysis for louver fin heat exchangers with variable louver angle. Appl. Therm. Eng. 26(2006), 1629–1639 (DOI:10.1016/j.applthermaleng.2005.11.019).

[18] Malapure V.P., Mitra S.K., Bhattacharya A.: Numerical investigation of fluid flow and heat transfer over louvered fins in compact heat exchanger. Int. J. Therm. Sci. 46(2007), 199–211 (DOI:10.1016/j.ijthermalsci.2006.04.010).

[19] Ameel B., Degroote J., Huisseune H., De Jaeger P., Vierendeels J., De Paepe M.: Numerical optimization of louvered fin heat exchanger with variable louver angles. J. Phys. Conf. Ser. 395(2012), 12054 (DOI:10.1088/1742-6596/395/1/012054).

[20] Fluent. ANSYS Fluent 12.0 user’s guide, Ansys Inc. 15317 (2009) 1–2498 (DOI:10.1016/0140-3664(87)90311-2).

[21] Matlab documentation. Matlab. (2012) R2012b (DOI:10.1201/9781420034950).

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 14
PDF Downloads 46 46 8