Numerical analysis of CO2 capture efficiency in post combustion CCS technology in terms of varying flow conditions

Open access

Abstract

The paper deals with the computational fluid dynamics modelling of carbon dioxide capture from flue gases in the post combustioncapture method, one of the available carbon capture and storage technologies. 30% aqueous monoethanolamine solution was used as a solvent in absorption process. The complex flow system including multiphase countercurrent streams with chemical reaction and heat transfer was considered to resolve the CO2 absorption. The simulation results have shown the realistic behaviour and good consistency with experimental data. The model was employed to analyse the influence of liquid to gas ratio on CO2 capture efficiency.

[1] Krótki A., Więcław-Solny L., Tatarczuk A.,Wilk A., Śpiewak D.: Laboratory studies of CO2 absorption with the use of 30% aqueous monoethanolamine solution. Arch. Combust. 12(2012), 195-203.

[2] Moser P., Schmidt S., Wallus S., Ginsberg T., Sieder G., Clausen I, Palacios J.G., Stoffregen T., Mihailowitsch D.: Enhancement and longterm testing of optimised post-combustion capture technology - Results of the second phase of the testing programme at the Niederaussem pilot plant. Energy Procedia 37(2013), 2377-2388.

[3] Moser P., Schmidt S., Sieder G., Garcia H., Stoffregen T.: Performance of MEA in long-term test at the post-combustion capture pilot plant in Niederaussem. Int. J. Greenh. Gas Con. 5(2011), 620-627.

[4] Sonderby T.L., Carlsen K.B., Fosbol P.L., Lars Kiorboe G., von Solms N.: A new pilot absorber for CO2 capture from flue gases: Measuring and modelling capture with MEA solution. Int. J. Greenh. Gas Con. 12(2013), 18-192.

[5] Dugas R., Alix P., Lemaire E., Broutin P., Rochelle G.: Absorber model for CO2 capture by monoethanolamine application to CASTOR pilot results. Energy Procedia 00(2008), 103-107.

[6] Jayarathna S., Lie B., Melaaen M.C.: Development of a dynamic model of a post combustion CO2 capture process. Energy Procedia 37(2013), 1760-1769.

[7] Asendrych D., Niegodajew P., Drobniak S.: CFD modelling of CO2 capture in a packed bed by chemical absorption. Chem. Process Eng. 34(2013), 1, 269-282, DOI: 10.2478/cpe-2013-0022.

[8] Alie C.: CO2 Capture With MEA: Integrating the Absorption Process and Steam Cycle of an Existing Coal-Fired Power Plant. MSc thesis, University of Waterloo, Waterloo, Ontario 2004.

[9] Kothandaraman A, Nord L., Bolland O., Herzog H.J., McRae G.J.: Comparison of solvents for post-combustion capture of CO2 by chemical absorption. Energy Procedia 1(2009), 1373-1380.

[10] Lawal A., Wang M., Stephenson P., Koumpouras G., Yeung H.: Dynamic modelling and analysis of post-combustion CO2 chemical absorption process for coalfired power plants. Fuel 89, 2010, 2791-2801.

[11] Harun N., Douglas P.L., Ricardez-Sandoval L., Croiset E.: Dynamic simulation of MEA absorption processes for CO2 capture from fossil fuel power plant.Energy Procedia 4(2011), 1478-1485.

[12] Simon L.L., Elias Y., Puxty G., Artanto Y., Hungerbuhler K.: Rate based modeling and validation of a carbon-dioxide pilot plant absorption column operating on monoethanolamine. Chem. Eng. Res. Des. 89(2011), 9, 1684-1692.

[13] Weiland R.H., Dingman J.C., Cronin D.B., Browning G.J.: Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends.J. Chem. Eng. Data 43(1998), 378-382.

[14] Billet R.: Packed Towers in Processing and Environmental Technology. VCH Verlagsgesellschaft mbH, Weinheim 1995.

[15] Aboudheir A., Tontiwachwuthikul P., Chakma A., Idem R.: Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions. Chem. Eng. Sci. 58(2003), 5195-5210.

[16] Vaidya P.D., Kenig E.Y.: CO2-alkanolamine reaction kinetics: A Review of recent studies. Chem. Eng. Technol. 30(2007), 11, 1467-1474.

[17] Faiz R., Al-Marzouqi M.: Mathematical modelling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contractors. J. Membrane Sci. 324(2009), 269-278.

[18] ANSYS FLUENT 13.0, User’s Guide. Lebenon, 2010.

[19] Ferziger J.H., Peric M.: Computational Methods for Fluid Dynamics. Springer- Verlag Berlin Heidelberg New York, 2002.

[20] GAMBIT 2.4, User’s Guide. Lebanon, 2007.

[21] Niegodajew P., Asendrych D.: Modeling countercurrent gas-liquid flow in porous media. Modelowanie Inżynierskie 14(2012), 45, 108-115.

[22] Gaspar J., Cormos A-M.: Dynamic modelling and validation of absorber and desorber columns for post-combustion CO2 capture. Comput. Chem. Eng. J. 35(2010), 2044-2052.

[23] Moser P., Schmidt S., Sieder G., Garcia H., Stoffregen T.: Performance of MEA in long-term test at the post-combustion capture pilot plant in Niederaussem.Int. J. Greenh. Gas Con. 5(2011), 620-627.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 135 6
PDF Downloads 73 72 4