Carbonization of biomass – an efficient tool to decrease the emission of CO2

Open access

Abstract

The paper presents the results and analysis of biomass processing in order to provide the conditions for the most profitable use of the biomass in modern and efficient power generation systems with particular attention put on the decrease of the emission of carbon dioxide (CO2) and no need to develop carbon capture and storage plants. The promising concept of CO2 storage via the production of biochar and the advantages of its application as a promising carbon sink is also presented and the results are supported by authors’ own experimental data. The idea enables the production of electricity, as well as (optionally) heat and cold from the thermal treatment of biomass with simultaneous storage of the CO2 in a stable and environmentally-friendly way. The key part of the process is run in a specially-designed reactor where the biomass is heated up in the absence of oxygen. The evolved volatile matter is used to produce heat/cold and electricity while the remaining solid product (almost completely dry residue) is sequestrated in soil. The results indicate that in order to reduce the emission of CO2 the biomass should rather be ‘cut and char’ than just ‘cut and burn’, particularly that the charred biomass may also become a significant source of nutrients for the plants after sequestration in soil.

[1] Baxter L.: Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel 84(2005), 1295-1302.

[2] McKendry P.: Energy production from biomass (Part 1): Overview of biomass. Bioresource Technol. 83(2002), 37-46.

[3] McKendry P.: Energy production from biomass (Part 2): Conversion technologies. Bioresource Technol. 83(2002), 47-54.

[4] McKendry P.: Energy production from biomass (Part 3): Gasification technologies. Bioresource Technol. 83(2002), 55-63.

[5] Hilber Th., Martensen M., Maier J., Scheffknecht G.: A method to characterisethe volatile release of solid recovered fuels (SRF). Fuel 86(2007), 303-308.

[6] Zevenhoven R., Axelsen E.P., Hupa M.: Pyrolysis of waste-derived fuel mixturescontaining PVC. Fuel 81(2002), 507-510.

[7] Raveendran K., Ganesh A.: Heating value of biomass and biomass pyrolysisproducts. Fuel 75(1996), 15, 1715-1720.

[8] Demirbas A.: Effect of initial moisture content on the yields of oily products frompyrolysis of biomass. J. Anal. Appl. Pyrol. 71(2004), 803-815.

[9] Onay O., Mete Kockar O.: Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 28(2003), 2417-2433.

[10] Varhegyi G., Antal M., Jr.: Charcoal, carbons and charcoal-type fuels frombiomass wastes. Ecol. Chem. Eng. 9(2002), 1, 21-31.

[11] Prins M., Ptasinski K., Janssen F.: Torrefaction of wood: Part 1. Weight losskinetics. J. Anal. Appl. Pyrol. 77(2006), 28-34.

[12] Prins M., Ptasinski K., Janssen F.: Torrefaction of wood: Part 2. Analysis ofproducts. J. Anal. Appl. Pyrol. 77(2006), 35-40.

[13] Prins M., Ptasinski K., Janssen F.: More efficient biomass gasification viatorrefaction. Energy 31(2006), 3458-3470.

[14] Prins M., Ptasinski K., Janssen F.: From coal to biomass gasification: Comparisonof thermodynamic efficiency. Energy 32(2007), 1248-1259.

[15] Yoder J., Galinato S., Granatstein D., Garcia-Perez M.: Economictradeoff between biochar and bio-oil production via pyrolysis. Biomass Bioenergy 35(2011), 1851-1862.

[16] Lehmann J., Rillig M., Thies J., Masiello C., Hockaday W., Crowley D.: Biochar effects on soil biota - A review, Soil Biol. Biochem. 43(2011), 1812-1836.

[17] Chew J., Doshi V.: Recent advances in biomass pretreatment - Torrefactionfundamentals and technology. Renew. Sust. Energy Rev. 15(2011), 4212-4222.

[18] Neves D., Thunman H., Matos A., Tarelho L., Gomez-Barea A.: Characterizationand prediction of biomass pyrolysis products. Prog. Energy Comb. Sci. 37(2011), 611-630.

[19] Mann M., Spath P.: A life cycle assessment of biomass cofiring in a coal-firedpower plant. Clean Prod. Process. 3(2001), 81-91.

[20] Bolan N., Kunhikrishnan A., Choppala G., Thangarajan R., Chung J.: Stabilization of carbon in compost and biochars in relation to carbon sequestrationand soil fertility. Sci. Total Environ. 424(2012), 264-270.

[21] Sevilla M., Marcia-Agullo J., Fuertes A.: Hydrothermal carbonization ofbiomass as a route for the sequestration of CO2: Chemical and structural propertiesof the carbonized products. Biomass Bioenergy 35(2011), 3152-3159.

[22] Kobyłecki R., Bis Z., Borecki R.: Poligeneracja dla szklarni. Rynek Gazu (2012), 151-160 (in Polish).

[23] Kacprzak A., Kobyłecki R., Bis Z.: Clean energy from a carbon fuel cell. Arch. Thermodyn. 32(2011), 3,145-157.

[24] Kobyłecki R., Bis Z.: Autotermiczna termoliza jako efektywna technologia produkcjiczystych i wysokoenergetycznych paliw. Arch. Spalania 6(2006), 1-4, 114-119 (in Polish).

[25] Kacprzak A., Kobyłecki R., Bis Z.: Influence of temperature and compositionof NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbonfuel cell. J. Power Sour. 239(2013), 409-414, DOI: 10.1016/j.jpowsour.2013.03.159.

[26] Xiu S., Shahbazi A.: Bio-oil production and upgrading research: A review. Renew. Sust. Energy Rev. 16 (2012), 4406-4414.

[27] Delrue F., Li-Beisson Y., Setier P.-A., Sahut C., Roubaud A., Froment A.-K., Peltier G.: Comparison of various microalgae liquid biofuel productionpathways based on energetic, economic and environmental criteria. Bioresource Technol. 136 (2013), 205-212.

[28] Parshetti G., Kent Hoekman G., Balasubramanian R.: Chemical, structuraland combustion characteristics of carbonaceous products obtained by hydrothermalcarbonization of palm empty fruit bunches. Bioresource Technol. 135 (2013), 683-689.

[29] Kruse A., FunkeA., Titirici M.-M.: Hydrothermal conversion of biomass tofuels and energetic materials. Curr. Opin. Chem. Biol. 17(2013), 515-521.

[30] Akhtar J., Amin N.: A review on operating parameters for optimum liquid oilyield in biomass pyrolysis. Renew. Sust. Energy Rev. 16(2012), 5101-5109.

[31] Goyal H.B., Seal D., Saxena R.C.: Bio-fuels from thermochemical conversionof renewable resources: A review. Renew. Sust. Energy Revi. 12 (2008), 504-517.

[32] Lehmann J., Joseph S. (Eds.): Biochar for Environmental Management. Earthscan, 2009.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 139 133 9
PDF Downloads 56 55 6