Heat transfer during condensation of refrigerants in tubular minichannels

Open access

Abstract

The present paper describes the results of experimental investigations of heat transfer during condensation of R134a, R404A and R407C in pipe minichannels with internal diameters 0.31-3.30 mm. The results concern investigations of the local heat transfer coefficient. The results were compared with the correlations proposed by other authors. Within the range of examined parameters of the condensation process in minichannels made of stainless steel, it was established that the values of the heat transfer coefficient may be described with Akers et al., Mikielewicz and Shah correlations within a limited range of the mass flux density of the refrigerant and the minichannel diameter. On the basis of experimental investigations, the authors proposed their own correlation for the calculation of local heat transfer coefficient.

[1] Akbar M.K., Plummer D.A., Giaasian A.: On gas, liquid two-phase flow regimes in microchannels. Int. J. Multiphase Flow 29(2003), 855-865.

[2] Akers W., Deans O.K., Crosser O.K.: Condensation heat transfer within horizontal tubes. Chem. Eng. Prog. Symposium 54(1958), 89-90.

[3] Akers W., Deans O.K., Crosser O.K.: Condensation heat transfer within horizontal tubes. Chem. Eng. Prog. Symposium 55(1959), 171-176.

[4] Bandhauer T.M., Agarwal A., Garimella S.: Measurement and modelling of condensation heat transfer coefficients in circular microchannels. J. Heat Transfer 128(2006), 1050-1059.

[5] Baummer T., Cetegen E., Ohadi M., Dessiatoun S.: Force fed evaporation and condensation utilizing advanced microstructured surfaces and microchannels. Microelectronics J., 39(2008), 7, 975-980.

[6] Bohdal T., Kuczyński W.: Boiling of R404A refrigeration medium under the conditions of periodically generated disturbances. Heat Transfer Eng. 32(2010), 5, 359-368.

[7] Bohdal T., Charun H., Sikora M.: Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int. J. Heat Mass Transfer 54(2011), 1963-1974.

[8] Bohdal T., Charun H., Sikora M.: Heat transfer during the condensation of R134a refrigerant in pipe minichannels. In: Proc. 6th Int. Conf. on Transport Phenomena in Multiphase Systems (M.E. Poniewski, S. Alabrudziński eds.), Ryn, Poland, June 28 - July 02, 2011, 225-232.

[9] Cavallini A., Doretti L., Matkovic M., Rossetto L.: Update on condensation heat transfer and pressure drop inside minichannels. In: Proc. ICMM2005, 3rd Int. Conf. on Microchannels and Minichannels, Toronto 2005.

[10] Cavallini A., Zecchin R.: A dimensionless correlation for heat transfer in forced convection condensation. In : Proc. 6th Int. Heat Transfer Conf., vol. 3, Tokyo 1974, 309-313.

[11] Cavallini A., CensiG., Del Col D., Doretti L., Longo G.A., Rossetto L.: Condensation of halogenated refrigerants inside smooth tubes. HVAC and Research 8(2002), 4, 429-451.

[12] Chang Y.J., Wang C.C.: A generalized heat transfer correlation for louvered fin geometry. Int. J. Refrigeration 40(1997), 3, 533-544.

[13] Dobson M.K., Chato J.C.: Condensation in smooth horizontal tubes. Trans ASME J. Heat Transfer ASME 120(1998), 193-213.

[14] Garcia-Cascales J.R., Vera-Garcia F., Gonzalez-Macia J., Corberan- Salvador J.M., Johnson M.W., Kohler G.T.: Compact heat exchangers modelling: Condensation. Int. J. Refrigeration 33(2010), 1, 135-147.

[15] Giaasian S.M.: Two-Phase Flow, Boiling and Condensation in Conventional and Miniature Systems. Cambridge University Press, 2008.

[16] Huhn J.: Void fraction with subcooled boiling. Recent Advances in Heat Transfer. Elsevier, Amsterdam 1992, 220-230.

[17] Kandlikar S.G.: Microchannels and minichannels - history, terminology, classification and current research needs. In: Proc. First Int. Conf. Microchannels and Minichannels, New York 2003.

[18] Kandlikar S.G., Garimella S., Li D., Colin S., King M.R.: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, 2006.

[19] Koyama S., Kuwahara K., Nakashita K., Yamamoto K.: Condensation of refrigerant in a multi-port channel. In: Proc. 1st Int. Conf. Microchannel and Minichannel, Rochester 2003, 193-205.

[20] Mehendale S.S., Jacobi A.M., Shah R.K.: Fluid flow and heat transfer at micro- and meso-scales with application to heat exchanger design. Appl. Mechanics Rev. 53(2000), 7, 175-193.

[21] Mikielewicz J.: Modelling od thermal-hydraulic processes. Ossolineum, Wrocław 1995 (in Polish).

[22] Mikielewicz J., Mikielewicz D.: A common method for calculation of flow boiling and flow condensation heat transfer coefficient in minichannels with account of nonadiabatic effects. Heat Transfer Eng. 32(2011), 1173-1181.

[23] Moser K., Webb R.L., Na B.: A new equivalent Reynolds number model for condensation in smooth tubes. J. Heat Transfer 120(1998), 410-417.

[24] Obhan C.B., Garimella S.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. Microscale Thermophys 5(2001), 4, 293-311.

[25] Shah R.K.: Classification of heat exchangers. In: Thermal Hydraulic Fundamentals and Design (S. Kakac, A.E. Bergles and F. Mayinger eds.), Hemisphere Publishing Corp., Washington D.C. 1986, 9-46.

[26] Shah M.M.: A general correlation for heat transfer during film condensation inside pipes. Int. J. Heat Mass Transfer 22(1979), 547-556.

[27] Shin J.S., Kim M.H.: An experimental study of condensation heat transfer inside a minichannel with a new measurement technique. Int. J. Multiphase Flow 30(2004), 311-325.

[28] Sun L., Mishima K.: Evaluation analysis of prediction methods for two-phase flow pressure drop in minichannels. Int. J. Multiphase Flow 35(2009), 47-54.

[29] Tabatabatai A., Faghri A.: A new two-phase flow map and transition boundary accounting for surface tension effects in horizontal miniature and microtubes. Int. J. Heat Transfer 123(2001), 958-968.

[30] Tandon T.N., Varrna H.K., Gupta C.P.: New flow regimes map for condensation inside horizontal tubes. J. Heat Transfer 104(1982), 4, 763-768.

[31] Tang L.: Empirical study of new refrigerant flow condensation inside horizontal smooth and micro-fin tubes. PhD thesis, University of Maryland, College Park 1997.

[32] Thome J.R.: Engineering Data Book III, Chap. 8: Condensation inside tubes. Wolverine Tube Inc., 2008.

[33] Thome J.R., Hajal J.El, Cavallini A.: Condensation in horizontal tubes. Part 1: two-phase flow pattern map. Int. J. HeatMass Transfer 46(2003), 18, 3349-3363.

[34] Thome J.R., Hajal J.El, Cavallini A.: Condensation in horizontal tubes, part 2: new heat transfer model based on flow regimes. Int. J. HeatMass Transfer 46(2003), 18, 3365-3387.

[35] Yan Y.Y., Lin T.F.: Condensation heat transfer and pressure drop of refrigerant R134a in small pipe. Int. J. Heat Mass Transfer 42(1999), 697-708.

[36] Yang C., Webb R.: A predictive model condensation in small hydraulic diameter tubes having axial microfin. Trans. ASME J. 119(1997), 776-782.

[37] Wang W.W., Radcliff T.D., Christensen R.N.: A condensation heat transfer correlation for millimetre - scale tubing with flow regime transition. Exp. Therm. Fluid Sci. 26(2002), 473-485.

[38] Webb R.L., Zhang M., Narayana A., Murthy R.: Condensation heat transfer in small diameter tubes. In: Proc. 11th Int. Heat Transfer Conf. Koyongju, Korea: Heat Transfer 1998.

[39] Wilson M.J., Newell T.A., Chato J.C., Ferreira C.A.: Refrigerant charge, pressure drop and condensation heat transfer in flattened tubes. Int. J. Refrig. 26(2003), 4, 442-451.

Archives of Thermodynamics

The Journal of Committee on Thermodynamics and Combustion of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.54

SCImago Journal Rank (SJR) 2016: 0.319
Source Normalized Impact per Paper (SNIP) 2016: 0.598

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 274 14
PDF Downloads 72 72 3