Bone Homeostasis in Experimental Fumonisins Intoxication of Rats

Halyna Rudyk 1 , Ewa Tomaszewska 2 , Ihor Kotsyumbas 1 , Siemowit Muszyński 3 , Agnieszka Tomczyk-Warunek 2 , 3 , Sylwia Szymańczyk 2 , Piotr Dobrowolski 4 , Dariusz Wiącek 5 , Daniel Kamiński 6 , and Oksana Brezvyn 1
  • 1 The State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives (SCIVP), , 79019, Lviv, Ukraine
  • 2 Department of Animal Physiology, University of Life Sciences in Lublin, 20-950, Lublin, Poland
  • 3 Department of Physics, University of Life Sciences, 20-950, Lublin, Poland
  • 4 Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
  • 5 Institute of Agrophysics, Polish Academy of Sciences, , 20-001, Lublin, Poland
  • 6 Department of Crystallography, Maria Curie-Skłodowska University, 20-031, Lublin, Poland


Fumonisins are strongly toxic metabolites of Fusarium proliferatum and Fusarium verticillioides commonly present in corn-based feed. The aim of the study was to evaluate bone homeostasis in experimental fumonisins B1 and B2 intoxication of rats, a vertebrate animal model of toxicological studies, as still little is known about the possible disturbing effect of fumonisins on bone homeostasis. Adolescent (5-week-old) male Wistar rats were randomly assigned into a control group and a group FB intoxicated with fumonisins by daily intragastric administration of fumonisins at the dose of 90 mg/kg of body weight per animal in the FB group for 21 days. The fumonisin intoxication did not affect body and bone mass, although the mechanical and geometric properties were decreased in fumonisin-intoxicated rats. Bone volumetric and mineral density did not differ between groups, but bone mineral content and bone ash percentage was lower in the FB group. Detailed analysis showed that Ca, Cu, Fe, Mn, Sr, and Zn bone content significantly decreased in fumonisin intoxicated rats and the alterations in structure of bone mineral phase (reduction of the apatite-bone crystals size) were noted. While the negative structural alterations in growth plate and articular cartilages were also observed, fumonisin intoxication improved histomorphometrical parameters of trabecular bone. Concluding, the dose of fumonisins used in the present study caused hepatotoxic effect, which was sufficient to trigger the disturbance in mineral homeostasis resulting in altered bone metabolism and decreased mechanical endurance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abel S., Gelderblom W.C. (1998). Oxidative damage and fumonisin B1-induced toxicity in primary rat hepatocytes and rat liver in vivo. Toxicology, 131: 121–131.

  • Álvarez-Lloret P., Lind P.M., Nyberg I., Orberg J., Rodríguez-Navarro A.B. (2009). Effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126) on vertebral bone mineralization and on thyroxin and vitamin D levels in Sprague-Dawley rats. Toxicol. Lett., 187: 63–68.

  • Antonissen G., Croubels S., Pasmans F., Ducatelle R., Eeckhaut V., Devree-se M., Verlinden M., Haesebrouck F., Eeckhout M., De Saeger S., Antlinger B., Novak B., Martel A., Van Immerseel F. (2015). Fumonisins affect the intestinal microbial homeostasis in broiler chickens, predisposing to necrotic enteritis. Vet. Res., 46: 98.

  • Bhardwaj P., Rai D., Garg M.L. (2016). Zinc improves the bone mechanical strength in ovariectomized rat model by restoring bone composition and hydroxyapatite crystallite dimension. Vitam. Miner., 5: 137.

  • Blicharski T., Tomaszewska E., Dobrowolski P., Hułas-Stasiak M., Muszyń-ski S. (2017). A metabolite of leucine (β-hydroxy-β-methylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLOS ONE, 12: e0179693.

  • Camplejohn K.L., Allard S.A. (1988). Limitations of safranin 'O' staining in proteoglycan-depleted cartilage demonstrated with monoclonal antibodies. Histochemistry, 89: 185–188.

  • EC (European Commission) (2006). Commission Recommendation No. 576/2006 of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. Off. J. Eur. Union, L229: 7.

  • EC (European Commission)(2016). Commission Recommendation No 2016/1219 of 29 July 2016 amending Recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. Off. J. Eur. Union, L208: 59.

  • FDA (Food and Drug Administration)(2001). Guidance for industry: fumonisin levels in human foods and animal feeds. Federal Register, 66: 56688–56689.

  • Ferretti J.L., Cointry G.R., Capozza R.F., Frost H.M. (2003). Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech. Ageing Dev., 124: 269–279.

  • Gelderblom W.C., Cawood M.E., Snyman S.D., Marasas W.F. (1994). Fumonisin B1 do-simetry in relation to cancer initiation in rat liver. Carcinogenesis, 15: 209–214.

  • Harkness J.E., Wagner J.E. (1995). The biology and medicine of rabbits and rodents. York, Williams and Wilkins, 4th ed., 372 pp.

  • Hayes W.C., Gerhart T.N. (1985). Biomechanics of bone: Applications for assessment of bone strength. J. Bone Miner. Res., 3: 259–294.

  • Hodgson S., Thomas L., Fattore E., Lind P.M., Alfven T., Hellström L., Håkans-son H., Carubelli G., Fanelli R., Jarup L. (2008). Bone mineral density changes in relation to environmental PCB exposure. Environ. Health Persp., 116: 1162–1166.

  • Jonas J., Burns J., Abel E.W., Cresswell M.J., Strain J.J., Paterson C.R. (1993). Impaired mechanical strength of bone in experimental copper deficiency. Ann. Nutr. Metab., 37: 245–252.

  • Kierończyk B., Rawski M., Józefiak D., Świątkiewicz S. (2017). Infectious and non-infectious factors associated with leg disorders in poultry – a review. Ann. Anim. Sci., 17: 645–669.

  • Kjaer M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev., 84: 649–698.

  • Lebepe-Mazur S., Bal H., Hopmans E., Murphy P., Hendrich S. (1995). Fumonisin B1 is fetotoxic in rats. Vet. Hum. Toxicol., 37: 126–130.

  • Ledoux D.R., Brown T.P., Weibking T.S., Rottinghaus G.E. (1992). Fumonisin toxicity in broiler chicks. J. Vet. Diagn. Invest., 4: 330–333.

  • Lee S., Kim D.H., Keum M.C., Han E., An B.K., Chang H.H., Choi Y.H., Moon B.H., Lee K.W. (2018). Effects of fumonisin B1 and mycotoxin binders on growth performance, tibia characteristics, gut physiology, and stress indicators in broiler chickens raised in different stocking densities. Poultry Sci., 97: 845–854.

  • Mc Kean C., Tang L., Tang M., Billam M., Wang Z., Theodorakis C.W., Ken-dall R.J., Wang J.S. (2006). Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food Chem. Toxicol., 44: 868–876.

  • Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.

  • Naka M., Morita Y., Ikeuchi K. (2005). Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage. Proc. Inst. Mech. Eng. H., 2019: 175–182.

  • Placinta C.M., D’Mello J.P.F., Macdonald A.M.C. (1999). A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol., 78: 21–37.

  • Rajesh R., Hariharasubramanian A., Ravichandran Y.D. (2012). Chicken bone as a bioresource for the bioceramic (hydroxyapatite). Phosphorus Sulfur, 187: 914–925.

  • Reeves P.G., Nielsen F.H., Fahey Jr.G.C. (1993). AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.

  • Rich L., Wihittaker P. (2005). Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz. J. Morphol. Sci., 22: 97–104.

  • Riley R.T., Voss K.A. (2006). Differential sensitivity of rat kidney and liver to fumonisin toxicity: organ-specific differences in toxin accumulation and sphingoid base metabolism. Toxicol. Sci., 92: 335–345.

  • Rodríguez-Estival J., Álvarez-Lloret P., Rodríguez-Navarro A.B., Mateo R. (2013). Chronic effects of lead (Pb) on bone properties in red deer and wild boar: relationship with vitamins A and D3. Environ. Pollut., 174: 142–149.

  • Ross P.F., Rice L.G., Osweiler G.D., Nelson P.E. (1992). A review and update of animal toxicoses associated with fumonisin contaminated feeds and production of fumonisins by Fusarium isolates. Mycopathologia, 117: 109–114.

  • Ruppel M.E., Miller L.M., Burr D.B. (2008). The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos. Int., 19: 1251–1265.

  • Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods, 9: 671–675.

  • Schreiner W.N., Jenkins R. (1983). Profile fitting for quantitative analysis in X-ray powder diffraction. Adv. X-Ray Analysis, 26: 141–147.

  • Šegvić M., Pepeljnjak S. (2001). Fumonisins and their effects on animal health a brief review. Vet. Arhiv., 71: 299–323.

  • Sergeev I.N., Kravchenko L.V., Piliia N.M., Batukhanov A.B., Sobolev V.S., Kuz'mina E.E., Iakushina L.M., Spirichev V.B., Tutel'ian V.A. (1990). The effect of the trichothecene mycotoxin deoxynivalenol (vomitoxin) on calcium homeostasis, vitamin D metabolism and receptors in rats. Vopr. Med. Khim., 36: 26–29.

  • Shahnazari M., Lang D., Fosmire G., Sharkey N., Mitchell A., Leach R. (2007). Strontium administration in young chickens improves bone volume and architecture but does not enhance bone structural and material strength. Calcif. Tissue Int., 80: 160–166.

  • Smith T.K. (1981). Effect of dietary calcium, phosphorus and vitamin D on zearalenone toxicosis in rats. Can. J. Anim. Sci., 61: 191–197.

  • Streit E., Naehrer K., Rodrigues I., Schatzmayr G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric., 93: 2892–2899.

  • Suvara S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques. Edinburgh, Churchill Livingstone, 7th ed., pp. 654.

  • Śliwa E., Dobrowolski P., Tatara M.R., Piersiak T., Siwicki A., Rokita E, Pierzynowski S.G. (2009). Alpha-ketoglutarate protects the liver of piglets exposed during prenatal life to chronic excess of dexamethasone from metabolic and structural changes. J. Anim. Physiol. Anim. Nutr., 93: 192–202.

  • Tomaszewska E., Dobrowolski P., Wydrych J. (2012). Postnatal administration of 2-oxo-glutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.

  • Tomaszewska E., Dobrowolski P., Puzio I. (2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.

  • Tomaszewska E., Dobrowolski P., Kostro K., Jakubczak A., Taszkun I., Jawor-ska-Adamu J., Żmuda A., Rycerz K., Muszyński S. (2015). The effect of HMB and 2-Ox administered during pregnancy on bone properties in primiparous and multiparous minks (Neovison vison). Bull.Vet. Inst. Pulawy, 59: 563–568.

  • Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tom-czyk A., Muszyński S., Radzki R. (2016). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage, and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.

  • Tomaszewska E., Dobrowolski P., Muszyński S., Kostro K., Taszkun I., Żmu-da A., Blicharski T., Hułas-Stasiak M. (2017 a). DON-induced changes in bone homeostasis in mink dams, J. Vet. Res., 61: 357–362.

  • Tomaszewska E., Muszyński S., Ognik K., Dobrowolski P., Kwiecień M., Juśkiewicz J., Chocyk D., Świetlicki M., Blicharski T., Gładyszewska B. (2017 b). Comparison of the effect of dietary copper nanoparticles with copper (II) salt on bone geometric and structural parameters as well as material characteristics in a rat model. J. Trace Elem. Med. Biol., 42: 103–110.

  • Tomaszewska E., Dobrowolski P., Kwiecień M., Winiarska-Mieczan A., Tom-czyk A., Muszyński S., Gładyszewska B. (2017 c). Dose-dependent influence of dietary Cu-glycine complex on bone and hyaline cartilage development in adolescent rats. Ann. Anim. Sci., 17: 1089–1105.

  • Tomaszewska E., Muszyński S., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk-Warunek A., Ejtel M., Świetlicka I., Gładyszew-skaB. (2018 a). White tea is more effective in preservation of bone loss in adult rats co-exposed to lead and cadmium compared to black, red or green tea. Ann. Anim. Sci., 18: 937–953.

  • Tomaszewska E., Dobrowolski P., Świetlicka I., Muszyński S., Kostro K., Jakubczak A., Taszkun I., Żmuda A., Rycerz K., Blicharski T., Jaworska--Adamu J. (2018 b). Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr., 102: e299–e308.

  • Voss K.A., Chamberlain W.J., Bacon C.W., Herbert R.A., Walters D.D., Norred W.P. (1995). Species chronic feeding study of the mycotoxin FB1 in B6C3F1 mice and Fischer 344 rats. Fundam. Appl. Toxicol., 24: 102–110.

  • Wu W., Li G., Liu T. (1995). The effect of fumonisin B1 on isolated chondrocytes and on bone formation. Poultry Sci., 74: 1431–1436.

  • Yanagishita M. (1993). Function of proteoglycans in the extracellular matrix. Acta Pathol. Jpn., 43: 283–293.


Journal + Issues