Manipulation of Rumen Fermentation and Methane Gas Production by Plant Secondary Metabolites (Saponin, Tannin and Essential Oil) – A Review of Ten-Year Studies

Open access

Abstract

A wide range of plant secondary metabolites (PSM) have been shown to have the potential to modulate the fermentation process in the rumen. The use of plants and plant extracts as natural feed additives has become an interesting topic not only among nutritionists but also other scientists. Although a large number of phytochemicals (e.g. saponins, tannins and essential oils) have recently been investigated for their methane (CH4) reduction potential, there have not yet been major breakthroughs that could be applied in practice. However, the effectiveness of these PSM depends on the source, type and the level of their presence in plant products. The aim of the present review was to assess ruminal CH4 emission through a comparison of integrating related studies from published papers, which described various levels of different PSM sources being added to ruminant feed. Apart from CH4, other related rumen fermentation parameters were also included in this review.

Anantasook N., Wanapat M., Cherdthong A. (2014). Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers. J. Anim. Physiol. Anim. Nutri., 98: 50–55.

Beauchemin K.A., Mc Ginn S. (2007). Methane emissions from beef cattle: effects of fumaric acid, essential oil, and canola oil. J. Anim. Sci., 84: 1489.

Bharathidhasan A., Viswanathan K., Balakrishnan V., Valli C., Ramesh S., Senthilkumar S.M.R. (2013). Effects of Purified Saponin on Rumen Methanogenesis and Rumen Fermentation Characteristics Studied Using In Vitro Gas Production Technique. Inter. J. Vet. Sci., 2: 44–49.

Bhatta R., Uyeno Y., Tajima K., Takenaka A., Yabumoto Y., Nonaka I., Enishi O., Kurihara M. (2009). Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production, and methanogenic archaea and protozoal populations. J. Dairy Sci., 92: 5512–5522.

Bhatta R., Saravanan M., Baruah L., Sampath K. (2012). Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J. Sci. Food Agri., 92: 2929–2935.

Bhatta R., Saravanan M., Baruah L., Sampath K.T., Prasad C.S. (2013 a). Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J. Appl. Microbiol., 115: 455–465.

Bhatta R., Baruah L., Saravanan M., Suresh K.P., Sampath K.T. (2013 b). Effect of medicinal and aromatic plants on rumen fermentation, protozoa population and methanogenesis in vitro. J. Anim. Physiol. Anim. Nutri., 97: 446–456.

Bhatta R., Saravanan M., Baruah L., Prasad C.S. (2015). Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J. Appl. Microbiol., 118: 557–564.

Bodas R., Prietoa N., García-Gonzálezb R., Andrésa S., Giráldeza F.J., López S. (2012). Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol., 176: 78–93.

Bouchard K., Wittenberg K.M., Legesse G., Krause D.O., Khafipour E., Buc-kley K.E., Ominski K.H. (2013). Comparison of feed intake, body weight gain, enteric methane emission and relative abundance of rumen microbes in steers fed sainfoin and lucerne silages under western Canadian conditions. Grass Forage Sci., 70: 116–129.

Bueno C., Brandi R.A., Franzolina A., Benete G., Fagundes G.M., Abdalla A.L., Louvandini H., Muir J.P. (2015). In vitro methane production and tolerance to condensed tannins in five ruminant species. Anim. Feed Sci. Technol., 205: 1–9.

Busquet M., Calsamiglia S., Ferret A., Kamel C. (2006). Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci., 89: 761–771.

Cardozo P.W., Calsamiglia S., Ferret A., Kamel C. (2004). Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci., 82: 3230–3236.

Castro-Montoya J., Peiren N., Cone J.W., Zweife B., Fievez V., De Campeneere S. (2015). In vivo and in vitro effects of a blend of essential oils on rumen methane mitigation. Livest. Sci., 180: 134–142.

Chwalek M., Lalun N., Bobichon H., Ple K., Voutquenne-Nazabadioko L. (2006). Structure-activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochim. Biophys. Acta, 1760: 1418–1427.

Cieslak A., Szumacher-Strabel S., Oleszek W. (2013). Plant components with specific activities against rumen methanogens. Anim., 7: 253–265.

Cobellis G., Petrozzi A., Forte C., Acuti G., Orrù M., Marcotullio M.C. (2015). Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability,7:12856–12869.

Durmic Z., Moate P.J., Eckard R., Revell D.K., Williams R., Vercoe P.E. (2014). In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J. Sci. Food Agr., 94: 1191–1196.

Ebrahimi M., Rajion M.A., Meng G.Y., Shokryzadan P., Sazili A.Q., Jahromi M.F. (2015). Feeding Oil Palm (Elaeis Guineensis, Jacq.) Fronds Alters Rumen Protozoal Population and Ruminal Fermentation Pattern in Goats. J. Anim. Sci., 14, article 3877, https://doi.org/10.4081/ijas.2015.3877.

Evans J.D., Martin S.A. (2000). Effects of thymol on ruminal microorganisms. Curr. Microbiol., 41: 336–340.

Feng Z.H., Cao Y.F., Gao Y.X., Li Q.F., Li J.G. (2012). Effect of Gross Saponin of Tribulus terrestris on Ruminal Fermentation and Methane Production in vitro. J. Anim. Vet. Ad., 11: 2121–2125.

Francis G., Kerem Z., Makkar H.P.S., Becker K. (2002). The biological action of saponins in animal systems: a review. Br. J. Nutr., 88: 587–605.

Goel G., Makkar H.P.S. (2012). Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod., 4: 729–739.

Guo Y.Q., Liu J.X., Lu Y., Zhu W.Y., Denman S.E., Mc Sweeney C.S. (2008). Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen microorganisms. Lett. Appl. Microbiol., 47: 421–426.

Hartmann T. (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochem., 68: 2831–2846.

Hassanat F., Benchaar C. (2013). Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agri., 93: 332–339.

Hatew B., Stringano E., Harvey M., Hendriks W.H., Hayot C., Smith C., Pel-likaan W. (2015). Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutri., DOI: 10.1111/jpn.12336.

Hu W.L., Liu J.X., Ye J.A., Wu Y.M., Guo Y.Q. (2005). Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol., 120: 333–339.

Jafari S., Goh Y.M., Rajion M.A., Jahromi M.F., Ebrahimi M. (2016 a). Ruminal methanogenesis and biohydrogenation reduction potential of papaya (Carica papaya) leaf: an in vitro study. It. J. Anim. Sci., 15: 157–165.

Jafari S., Goh Y.M., Rajion M.A., Jahromi M.F., Ebrahimi M. (2016 b). Manipulation of rumen microbial fermentation by polyphenol rich solvent fractions from papaya leaf to reduce green-house gas methane and biohydrogenation of C18 PUFA. J. Agri. Food Chem., DOI: 10.1021/acs.jafc.6b00846.

Jafari S., Goh Y.M., Rajion M.A., Jahromi M.F., Ebrahimi M. (2016 c). Papaya (Carica papaya) leaf methanolic extract modulates in vitro rumen methanogenesis and rumen biohydrogenation. J. Anim. Sci., doi:10.1111/asj.12634.

Jahani-Azizabadi H., Danesh Mesgaran M., Vakili A.R., Rezayazdi K. (2014). Effect of some plant essential oils on in vitro ruminal methane production and on fermentation characteristics of a mid-forage diet. J. Agr. Sci. Technol., 16: 1543–1554.

Jayanegara A., Goel G., Makkar H.P.S., Becker K. (2010). Reduction in Methane Emissions from Ruminants by Plant Secondary Metabolites: Effects of Polyphenols and Saponins. Food Agri Org UN: 151–157.

Jayanegara A., Kreuzer M., Wina E., Leiber E. (2011). Significance of phenolic compounds in tropical forages for the ruminal bypass of polyunsaturated fatty acids and the appearance of bio-hydrogenation intermediates as examined in vitro. Anim. Prod. Sci., 51: 1127–1136.

Jayanegara A., Kreuzer M., Leiber F. (2012). Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livest. Sci., 147: 104–112.

Jayanegara A., Ikhsan T., Toharmat T. (2013). Assessment of methane estimation from volatile fatty acid stoichiometry in the rumen in vitro. J. Indo. Trop. Anim. Agri., 38: 103–108.

Jayanegara A., Wina E., Takahashi J. (2014). Meta-analysis on methane mitigating properties of saponin-rich sources in the rumen in vitro: influence of addition levels and plant sources. Asian-Australas. J. Anim. Sci., 27: 1426–1435.

Jayanegara A., Goel G., Makkar P.S.H., Becker K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol., 209: 60–68.

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483–2492.

Kamra D.N., Agarwal N., Chaudhary L.C. (2006). Inhibition of ruminal methanogenesis by tropical plants containing secondary compounds. Intl. Congress Ser., 1293: 156–163.

Kongmun P., Wanapat M., Pakdee P., Navanukraw C. (2010). Effect of coconut oil and garlic powder on in vitro fermentation using gas production technique. Livest. Sci., 127: 38–44.

Kongmun P., Wanapat M., Pakdee P., Navanukraw C., Yu Z. (2011). Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livest. Sci., 135: 84–92.

Kumar S., Choudhury P.K., Carro M.D., Griffith G.W., Dagar S.S., Puniya M., Ca-labro S., Ravella S.R., Dhewa T., Upadhyay R.C., Sirohi S.K., Kundu S.S., Wa-napat M., Puniya A.K. (2013). New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol., DOI 10.1007/s00253-013-5365-0.

Li W., Powers W. (2012). Effects of saponin extracts on air emissions from steers. J. Anim. Sci., 90: 4001–4013.

Lin B., Lu Y., Wang J.H., Liang Q., Liu J.X. (2012). Effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro. J. Anim. Feed Sci., 21: 198–210.

Lin B., Wang JH., Lu Y., Liang Q., Liu JX. (2013). In vitro rumen fermentation and methane production are influenced by active components of essential oils combined with fumarate. J. Anim. Physiol. Anim. Nutr., 97:1–9.

Manh N.S., Wanapat M., Uriyapongson S., Khejornsart P., Chanthakhoun V. (2012). Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afri. J. Agri. Res., 7: 1997–2003.

Mao H.L., Wang J.K., Zhou Y.Y., Liu JX. (2010). Effects of addition of tea saponins and soyabean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livest. Sci., 129: 56–62.

Mateos J., Ranilla M.J., Tejido M.L., Saro C., Kamel C., Carro M.D. (2013). The influence of diet type (dairy versus intensive fattening) on the effectiveness of garlic oil and cinnamaldehyde to manipulate in vitro ruminal fermentation and methane production. Anim. Prod. Sci., 53: 299–307.

Meale S.J., Chaves A.V., Mc Allister T.A., Iwaasa A.D., Yang W.Z., Benchaar C. (2014). Including essential oils in lactating dairy cow diets: effects on methane emissions. Anim. Prod. Sci., 54: 1215–1218.

Mihaela G., Criste A., Cocan D., Constantinescu R., Raducu C., Miresan V. (2014). Methane production in the rumen and its influence on global warming. Pro-Envir.,7: 64–70.

Narvaez N., Wang Y., Mc Allister T. (2013). Effects of extracts of Humulus lupulus (hops) and Yucca schidigera applied alone or in combination with monensin on rumen fermentation and microbial populations in vitro. J. Sci. Food Agr., 93: 2517–2522.

Naumann H.D., Lambert B.D., Armstrong S.A., Fonseca M.A., Tedeschi L.O., Muir J.P. (2015). Effect of replacing alfalfa with panicled-tick clover or sericea lespedeza in corn-alfalfa-based substrates on in vitro ruminal methane production. J. Dairy Sci., 98: 3980–3987.

Patra A.K. (2012). Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions. Envir. Monitor. Assess., 184: 1929–1952.

Patra A.K. (2014). A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest. Sci., 162: 97–103.

Patra M., Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Food Agri., 91: 24–37.

Patra A.K., Yu Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Appl. Environ. Microbiol., 78: 4271–4280.

Patra A.K., Yu Z. (2013). Effective reduction of enteric methane production by a combination of nitrate and saponin without adverse effect on feed degradability, fermentation, or bacterial and archaeal communities of the rumen. Bioresour. Technol., 148: 352–360.

Patra A.K., Yu G. (2014 a). Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresour. Technol., 155: 129–135.

Patra A.K., Yu Z. (2014 b). Effects of vanillin, quillaja saponin, and essential oils on in vitro fermentation and protein degrading microorganisms of the rumen. Appl. Microbiol. Biotechnol., 98: 897–905.

Patra A.K., Yu Z. (2015). Effects of Adaptation of In vitro Rumen Culture to Garlic Oil, Nitrate, and Saponin and Their Combinations on Methanogenesis, Fermentation, and Abundances and Diversity of Microbial Populations. Front Microbiol., 6: 14–34.

Patra A.K., Kamra D.N., Agarwal N. (2010). Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agr., 90: 511–520.

Patra A.K., Stiverson J., Yu Z. (2012). Effects of quillaja and yucca saponins on communities and select populations of ruminal bacteria and archaea, and fermentation in vitro. J. Appl. Micro-biol., 113: 1329–1340.

Pinski B., Günal M., Abu Ghazaleh AA. (2015). The effects of essential oil and condensed tannin on fermentation. Anim. Prod. Sci., http://dx.doi.org/10.1071/AN15069.

Rira M., Chentli A., Boufener S., Boussebou H. (2015). Effects of plants containing secondary metabolites on ruminal methanogenesis of sheep in vitro. Energy Procedia., 74: 15–24.

Sallam S.M.A., Bueno I.C.S., Brigide P., Godoy P.B., Vitti D.M.S.S., Abdalla A.L. (2009). Efficacy of eucalyptus oil on in vitro rumen fermentation and methane production. Options Mediterraneennes., 85: 267–272.

Sliwinski B.J., Carla R.S., Machmuller A., Kreuzer M. (2002). Efficacy of plant extracts rich in secondary constituents to modify rumen fermentation. Anim. Feed Sci. Technol., 101: 101–114.

Soltan Y.A., Morsy A.S., Sallam S.M.A., Louvandini H., Abdalla A.L. (2012). Comparative in vitro evaluation of forage legumes (Prosopis, Acacia, Atriplex, and Leucaena) on ruminal fermentation and methanogenesis. J. Anim. Feed Sci., 21: 759–772.

Soltan Y.A., Morsy A.S., Sallam S.M.A., Lucas R.C., Louvandini H., Kreuzer M., Abdalla A.L. (2013). Contribution of condensed tannins and mimosine to the methane mitigation caused by feeding Leucaena leucocephala. Arch. Anim. Nutr., 67: 169–184.

Tan H.Y., Sieo C.C., Abdullah N., Liang J.B., Huang X.D., Ho YW. (2011). Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol., 169: 185–193.

Tekippe J.A., Hristov A.N., Heyler K.S., Cassidy T.W., Zheljazkov V.D., Ferrei-ra J.F.S., Karnati S.K., Varga G.A. (2011). Rumen fermentation and production effects of Origanum vulgare L. in lactating dairy cows. J. Dairy Sci., 94: 5065–5079.

Tekippe J.A., Hristov A.N., Heyler K.S., Zheljazkov V.D., Ferreira J.F.S., Can-trell C.L., Varga G.A. (2012). Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Can. J. Anim. Sci., 92: 395-408.

Tekippe J.A., Tacoma R., Hristov A.N., Lee C., O.H.J., Heyler K.S., Cassidy T.W., Varga G.A., Bravo D. (2013). Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J. Dairy Sci., 96: 7892–7903.

Thao N.T., Wanapat M., Kang S., Cherdthong A. (2015). Effects of Supplementation of Eucalyptus (E. Camaldulensis) Leaf Meal on Feed Intake and Rumen Fermentation Efficiency in Swamp Buffaloes. Asian-Australas. J. Anim. Sci., 28: 951–957.

Tomkins N.W., Denman S.E., Pilajun R., Wanapat M., Mc Sweeney C.S., Elliott R. (2015). Manipulating rumen fermentation and methanogenesis using an essential oil and monensin in beef cattle fed a tropical grass hay. Anim. Feed Sci. Technol., 200: 25–34.

Verma V., Chaudhary L.C., Agarwal N., Bhar R., Kamra D.N. (2012). Effect of Feeding Mixture of Garlic Bulb and Peppermint Oil on Methane Emission, Rumen Fermentation and Microbial Profile in Buffaloes. Anim. Nutr. Feed Technol., 12: 157–164.

Wanapat M., Chanthakhoun V., Phesatcha K., Kang S. (2014). Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in swamp buffaloes. Livest. Sci., 162: 126–133.

Wang X.F., Mao S.Y., Liu J.H., Zhang L.L., Cheng Y.F., Wand J., Zhu WY. (2011). Effect of the gynosaponin on methane production and microbe numbers in a fungus methanogen coculture. J. Anim. Feed Sci., 20: 272–284.

Wischer G., Boguhn J., Steinga H., Schollenberger M., Rodehutscord M. (2013). Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro. Animal, 7: 1796–1805.

Zhou C.S., Xiao W.J., Tan Z.L., Salem A.Z.M., Geng M.M., Tang S.X., Wang M., Han X.F., Kang JH. (2012). Effects of dietary supplementation of tea saponins (Ilex kudingcha C.J.Tseng) on ruminal fermentation, digestibility and plasma antioxidant parameters in goats. Anim. Feed Sci. Technol., 176: 163–169.

Zhou Y.Y., Mao H.L., Jiang F., Wang J.K., Liu J.X., Mc Sweeney C.S. (2011). Inhibition of rumen methanogenesis by tea saponins with reference to fermentation pattern and microbial communities in Hu sheep. Anim. Feed Sci. Technol., 166–167: 93–100.

Zmora P., Cieslak A., Pers-Kamczyc E., Nowak A., Szczechowiak J., Szumacher-Strabel M. (2013). Effect of Mentha piperita L. on in vitro rumen methanogenesis and fermentation. Acta Agr., 62: 46–52.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 156 156 92
PDF Downloads 171 171 101