Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos

Open access


In this study, we first investigated the effects of 3-methyladenine (3-MA), an autophagy inhibitor, and the inducer – rapamycin (RAPA) on the incidence of programmed cell death (PCD) symptoms during in vitro development of porcine somatic cell nuclear transfer (SCNT)-derived embryos. The expression of autophagy inhibitor mTOR protein was decreased in porcine SCNT blastocysts treated with 3MA. The abundance of the autophagy marker LC3 increased in blastocysts following RAPA treatment. Exposure of porcine SCNT-derived embryos to 3-MA suppressed their developmental abilities to reach the blastocyst stage. No significant difference in the expression pattern of PCD-related proteins was found between non-transfected dermal cell and transfected dermal cell groups. Additionally, the pattern of PCD in SCNT-derived blastocysts generated using SC and TSC was not significantly different, and in terms of porcine SCNT-derived embryo development rates and total blastocyst cell numbers, there was no significant difference between non-transfected cells and transfected cells. In conclusion, regulation of autophagy affected the development of porcine SCNT embryos. Regardless of the type of nuclear donor cells (transfected or non-transfected dermal cells) used for SCNT, there was no difference in the developmental potential and quantitative profiles of autophagy/apoptosis biomarkers between porcine transgenic and non-transgenic cloned embryos. These results led us to conclude that PCD is important for controlling porcine SCNT-derived embryo development, and that transfected dermal cells can be utilized as a source of nuclear donors for the production of transgenic cloned progeny in pigs.

Agrawal H., Selokar N.L., Saini M., Singh M.K., Chauhan M.S., Palta P., Sin-gla S.K., Manik R.S. (2018). m-carboxycinnamic acid bishydroxamide improves developmental competence, reduces apoptosis and alters epigenetic status and gene expression pattern in cloned buffalo (Bubalus bubalis) embryos. Reprod. Domest. Anim., 53: 986–996.

Boya P., González-Polo R.A., Casares N., Perfettini J.L., Dessen P., Larochet-te N., Métivier D., Meley D., Souquere S., Yoshimori T., Pierron G., Codo-gno P., Kroemer G. (2005). Inhibition of macroautophagy triggers apoptosis. Mol. Cell Biol., 25: 1025–1040.

Brill A., Torchinsky A., Carp H., Toder V. (1999). The role of apoptosis in normal and abnormal embryonic development. J. Assist. Reprod. Genet., 16: 512–519.

Brink M.F., Bishop M.D., Pieper F.R. (2000). Developing efficient strategies for the generation of transgenic cattle which produce biopharmaceuticals in milk. Theriogenology, 53: 139–148.

Brophy B., Smolenski G., Wheeler T., Wells D., L’ Huillier P., Laible G. (2003). Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat. Biotechnol., 21: 157–162.

Callesen M.M., Árnadóttir S.S., Lyskjaer I., Ørntoft M.W., Høyer S., Dagnaes-Hansen F., Liu Y., Li R., Callesen H., Rasmussen M.H., Berthelsen M.F., Thomsen M.K., Schweiger P.J., Jensen K.B., Laurberg S., Ørntoft T.F., Elver-løv-Jakobsen J.E., Andersen C.L. (2017). A genetically inducible porcine model of intestinal cancer. Mol. Oncol., 11: 1616–1629.

Campbell K.H., Mc Whir J., Ritchie W.A., Wilmut I. (1996). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380: 64–66.

Chi D., Zeng Y., Xu M., Si L., Qu X., Liu H., Li J. (2017). LC3-dependent autophagy in pig 2-cell cloned embryos could influence the degradation of maternal mRNA and the regulation of epigenetic modification. Cell. Reprogram., 19: 354–362.

Cibelli J.B., Stice S.L., Golueke P.J., Kane J.J., Jerry J., Blackwell C., Poncede León F.A., Robl J.M. (1998). Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science, 280: 1256–1258.

Denning C., Dickinson P., Burl S., Wylie D., Fletcher J., Clark A.J. (2001). Gene targeting in primary fetal fibroblasts from sheep and pig. Clon. Stem Cells, 3: 221–231.

Deryugina E.I., Quigley J.P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev., 25: 9–34.

Fabian D., Koppel J., Maddox-Hyttel P. (2005). Apoptotic processes during mammalian preimplantation development. Theriogenology, 64: 221–231.

Feng X., Cao S., Wang H., Meng C., Li J., Jiang J., Qian Y., Su L., He Q., Zhang Q. (2015). Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res., 24: 73–85.

Galluzzi L., Maiuri M.C., Vitale I., Zischka H., Castedo M., Zitvogel L., Kro-emer G. (2007). Cell death modalities: classification and pathophysiological implications. Cell Death Differ., 14: 1237–1243.

Galoian K., Temple H.T., Galoyan A. (2012). mTORC1 inhibition and ECM-cell adhesion-independent drug resistance via PI3K-AKT and PI3K-RAS-MAPK feedback loops. Tumour Biol., 33: 885–890.

Gómez M.C., Pope C.E. (2015). Cloning endangered felids by interspecies somatic cell nuclear transfer. Methods Mol. Biol., 1330: 133–152.

Himaki T., Yokomine T.A., Sato M., Takao S., Miyoshi K., Yoshida M. (2011). Effects of trichostatin A on in vitro development and transgene function in somatic cell nuclear transfer embryos derived from transgenic Clawn miniature pig cells. Anim Sci. J., 81: 558–563.

Iguma L.T., Lisauskas S.F., Melo E.O., Franco M.M., Pivato I., Vianna G.R., Sou-sa R.V., Dode M.A., Aragão F.J., Rech E.L., Rumpf R. (2005). Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet. Mol. Res., 4: 55–66.

Ji Q., Zhu K., Liu Z., Song Z., Huang Y., Zhao H., Chen Y., He Z., Mo D., Cong P. (2013). Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis. Theriogenology, 79: 815–823.

Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (1997). Inhibition of autophagy abrogates tumour necrosis factor alpha induced apoptosis in human T-lymphoblastic leukaemic cells. Br. J. Haematol., 98: 673–685.

Jia L., Dourmashkin R.R., Allen P.D., Gray A.B., Newland A.C., Kelsey S.M. (2014). Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol., 15: 81–94.

Jin L., Guo Q., Zhu H.Y., Xing X.X., Zhang G.L., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2017). Quisinostat treatment improves histone acetylation and developmental competence of porcine somatic cell nuclear transfer embryos. Mol. Reprod. Dev., 84: 340–346.

Jin L., Guo Q., Zhang G.L., Xing X.X., Xuan M.F., Luo Q.R., Luo Z.B., Wang J.X., Yin X.J., Kang J.D. (2018). The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram., 20: 205–213.

Kasinathan P., Knott J.G., Moreira P.N., Burnside A.S., Jerry D.J., Robl J.M. (2001). Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol. Reprod., 64: 1487–1493.

Keefer C.L. (2008). Lessons learned from nuclear transfer (cloning). Theriogenology, 69: 48–54.

Keefer C.L. (2015). Artificial cloning of domestic animals. Proc. Natl. Acad. Sci. USA, 112: 8874–8878.

Kim G.A., Lee E.M., Jin J.X., Lee S., Taweechaipaisankul A., Hwang J.I., Alam Z., Ahn C., Lee B.C. (2017). Generation of CMAHKO/GTKO/shTNFRI-Fc/HO-1 quadruple gene modified pigs. Transgenic Res., 26: 435–445.

Kim S.H., Zhao M.H., Liang S., Cui X.S., Kim N.H. (2015). Inhibition of cathepsin B activity reduces apoptosis by preventing cytochrome c release from mitochondria in porcine parthenotes. J. Reprod. Dev., 61: 261–268.

Knight Z.A., Shokat K.M. (2007). Chemically targeting the PI3K family. Biochem. Soc. Trans., 35: 245–249.

Kolber-Simonds D., Lai L., Watt S.R., Denaro M., Arn S. (2004). Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl. Acad. Sci. USA, 101: 7335–7340.

Kwon D.J., Kim D.H., Hwang I.S., Kim D.E., Kim H.J., Kim J.S., Lee K., Im G.S., Lee J.W., Hwang S. (2017). Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res., 26: 153–163.

Lee H.R., Gupta M.K., Kim D.H., Hwang J.H., Kwon B., Lee H.T. (2016). Poly(ADP-ribosyl)ation is involved in pro-survival autophagy in porcine blastocysts. Mol. Reprod. Dev., 83: 37–49.

Lee P.S., Tsang S.W., Moses M.A., Trayes-Gibson Z., Hsiao L.L., Jensen R., Squil-lace R., Kwiatkowski D.J. (2010). Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am. J. Respir. Cell Mol. Biol., 42: 227–234.

Lee S., Jin J.X., Khoirinaya C., Kim G.A., Lee B.C. (2015). Lanosterol influences cytoplasmic maturation of pig oocytes in vitro and improves preimplantation development of cloned embryos. Theriogenology, 61: 261–268.

Lee S.C., Lee H., Oh K.B., Hwang I.S., Yang H., Park M.R., Ock S.A., Woo J.S., Im G.S., Hwang S. (2017). Production and breeding of transgenic cloned pigs expressing human CD73. Dev. Reprod., 21: 157–165.

Lee S.E., Hwang K.C., Sun S.C., Xu Y.N., Kim N.H. (2011). Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol. Reprod. Dev., 78: 498–509.

Lee S.H., Xu Y.N., Heo Y.T., Cui X.S., Kim N.H. (2013). Effects of trichostatin A and 5-aza-2’deoxycytidine on nuclear reprogramming in pig cloned embryos. Reprod. Dev. Biol., 37: 269–279.

Li Z., He X., Chen L., Shi J., Zhou R., Xu W., L iu D., Wu Z. (2013). Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram., 15: 459–470.

Lin T., Lee J.E., Oqani R.K., Kim S.Y., Cho E.S., Jeong Y.D., Baek J.J., Jin D.I. (2016). Tauroursodeoxycholic acid improves pre-implantation development of porcine SCNT embryo by endoplasmic reticulum stress inhibition. Reprod. Biol., 16: 269–278.

Luo Y., Wang Y., Liu J., Lan H., Shao M., Yu Y., Quan F., Zhang Y. (2015). Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res., 24: 875–883.

Malemud C.J. (2006). Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci., 11: 1696–1701.

Mastromonaco G.F., Perrault S.D., Betts D.H., King W.A. (2003). Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev. Biol., 6: 41.

Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V. (2012). The pig: a model for human infectious diseases. Trends Microbiol., 30: 50–57.

Miyamoto K., Hoshino Y., Minami N., Yamada M., Imai H. (2007). Effects of synchronization of donor cell cycle on embryonic development and DNA synthesis in porcine nuclear transfer embryos. J. Reprod. Dev., 53: 237–246.

Nikoletopoulou V., Markaki M., Palikaras K., Tavernarakis N. (2013). Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta, 1833: 3448–3459.

Olivera R., Moro L.N., Jordan R., Pallarols N., Guglielminetti A., Luzzani C., Miriuka S.G., Vichera G. (2018). Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning, 11: 13–22.

Opiela J., Samiec M., Romanek J. (2017). In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology, 97: 27–33.

Page-Mc Caw A., Ewald A.J., Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 8: 221–233.

Pan T., Rawal P., Wu Y., Xie W., Jankovic J., Le W. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience, 164: 541–551.

Samiec M. (2004). Development of pig cloning studies: past, present and future. J. Anim. Feed Sci., 13: 211–238.

Samiec M. (2005). The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci., 14: 393–422.

Samiec M., Skrzyszowska M. (2010 a). Preimplantation developmental capability of cloned pig embryos derived from different types of nuclear donor somatic cells. Ann. Anim. Sci., 10: 385–398.

Samiec M., Skrzyszowska M. (2010 b). The use of different methods of oocyte activation for generation of porcine fibroblast cell nuclear-transferred embryos. Ann. Anim. Sci., 10: 399–411.

Samiec M., Skrzyszowska M. (2011 a). Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics – recent achievements. Pol. J. Vet. Sci., 14: 317–328.

Samiec M., Skrzyszowska M. (2011 b). The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci., 14: 329–340.

Samiec M., Skrzyszowska M. (2012 a). High developmental capability of porcine cloned embryos following trichostatin A-dependent epigenomic transformation during in vitro maturation of oocytes pre-exposed to R-roscovitine. Anim. Sci. Pap. Rep., 30: 383–393.

Samiec M., Skrzyszowska M. (2012 b). Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology, 78: 1855–1867.

Samiec M., Skrzyszowska M. (2013). Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci., 13: 513–529.

Samiec M., Skrzyszowska M. (2014). Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol., 14: 128–139.

Samiec M., Skrzyszowska M. (2018 a). Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci., 21: 217–227.

Samiec M., Skrzyszowska M. (2018 b). Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals? – a review. Ann. Anim. Sci., 18: 623–638.

Samiec M., Skrzyszowska M., Lipiński D. (2012). Pseudophysiological transcomplementary activation of reconstructed oocytes as a highly efficient method used for producing nuclear-transferred pig embryos originating from transgenic foetal fibroblast cells. Pol. J. Vet. Sci., 15: 509–516.

Samiec M., Skrzyszowska M., Opiela J. (2013 a). Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci., 13: 275–293.

Samiec M., Skrzyszowska M., Bochenek M. (2013 b). In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci., 13: 735–752.

Samiec M., Opiela J., Lipiński D., Romanek J. (2015). Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed. Res. Int., 2015: 814686.

Sandrin V., Boson B., Salmon P., Gay W., Nègre D., Le Grand R., Trono D., Cos-set F.L. (2002). Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes and CD34+ cells derived from human and nonhuman primates. Blood, 100: 823–832.

Schwartz L.M., Smith S.W., Jones M.E., Osborne B.A. (1993). Do all programmed cell deaths occur via apoptosis? Proc. Natl. Acad Sci. USA, 90: 980–984.

Shen X., Zhang N., Wang Z., Bai G., Zheng Z., Gu Y., Wu Y., Liu H., Zhou D., Lei L. (2015). Induction of autophagy improves embryo viability in cloned mouse embryos. Sci. Rep., 5: 17829.

Skrzyszowska M., Smorąg Z., Słomski R., Kątska-Książkiewicz L., Kalak R., Michalak E., Wielgus K., Lehmann J., Lipiński D., Szalata M., Pławski A., Samiec M., Jura J., Gajda B., Ryńska B., Pieńkowski M. (2006). Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod., 74: 1114–1120.

Song B.S., Kim J.S., Yoon S.B., Lee K.S., Koo D.B., Lee D.S., Choo Y.K., Huh J.W., Lee S.R., Kim S.U., Kim S.H., Kim H.M., Chang K.T. (2001). Inactivated Sendai-virusmediated fusion improves early development of cloned bovine embryos by avoiding endoplasmic-reticulum-stress-associated apoptosis. Reprod. Fert. Develop., 23: 826–836.

Song B.S., Yoon S.B., Kim J.S., Sim B.W., Kim Y.H., Cha J.J., Choi S.A., Min H.K., Lee Y., Huh J.W., Lee S.R., Kim S.H., Koo D.B., Choo Y.K., Kim H.M., Kim S.U., Chang K.T. (2012). Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol. Reprod., 87: 1–11.

Staunstrup N.H., Stenderup K., Mortensen S., Primo M.N., Rosada C., Steini-che T., Liu Y., Li R., Schmidt M., Purup S., Dagnæs-Hansen F., Schrøder L.D., Svensson L., Petersen T.K., Callesen H., Bolund L., Mikkelsen J.G. (2017). Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1. Dis. Model. Mech., 10: 869–880.

Tanabe Y., Kuwayama H., Wakayama S., Nagatomo H., Ooga M., Kamimura S., Kishigami S., Wakayama T. (2017). Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction, 154: 859–866.

Tanida I., Ueno T., Kominami E. (2004). LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 36: 2503–2518.

Tsukada M., Ohsumi Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett., 333: 169–174.

Tsukamoto S. (2014). Autophagic activity as an indicator for selecting good quality embryos. Reprod. Med. Biol., 14: 57–64.

Tsukamoto S., Yamamoto A. (2013). The role of autophagy in early mammalian embryonic development. J. Mamm. Ova. Res., 30: 86–94.

Vajta G. (2007). Handmade cloning: the future way of nuclear transfer? Trends Biotechnol., 25: 250–253.

Verma G., Arora J.S., Sethi R.S., Mukhopadhyay C.S., Verma R. (2015). Handmade cloning: recent advances, potential and pitfalls. J. Anim. Sci. Biotechnol., 6: 43.

Wakayama T., Perry A.C., Zuccotti M., Johnson K.R., Yanagimachi R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394: 369–374.

Wang H., Cui W., Meng C., Zhang J., Li Y., Qian Y., Xing G., Zhao D., Cao S. (2018). MC1568 enhances histone acetylation during oocyte meiosis and improves development of somatic cell nuclear transfer embryos in pig. Cell. Reprogram., 20: 55–65.

Wang M., Gao Y., Qu P., Qing S., Qiao F., Zhang Y., Mager J., Wang Y. (2017). Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci. Rep., 7: 13403.

Wani N.A., Vettical B.S., Hong S.B. (2017). First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One, 12 (5): e0177800.

Wilmut I., Schnieke A.E., Mc Whir J., Kind A.J., Campbell K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385: 810–813.

Wongsrikeao P., Nagai T., Agung B., Taniguchi M., Kunishi M., Suto S., Otoi T. (2007). Improvement of transgenic cloning efficiencies by culturing recipient oocytes and donor cells with antioxidant vitamins in cattle. Mol. Reprod. Dev., 74: 694–702.

Xu Y.N., Shen X.H., Lee S.E., Kwon J.S., Kim D.J., Heo Y.T., Cui X.S., Kim N.H. (2012). Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J. Reprod. Dev., 58: 576–584.

Yu M., Qiu Z.L., Li H., Zeng W.S., Chen L.N., Li Q.H., Quan S. (2011). Association between cell apoptosis and the quality of early mouse embryos. Nan Fang Yi Ke Da Xue Xue Bao, 31: 409–413.

Yue Z., Jin S., Yang C., Levine A.J., Heintz N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA., 100: 15077–15082.

Zakhartchenko V., Mueller S., Alberio R., Schernthaner W., Stojkovic M., We-nigerkind H., Wanke R., Lassnig C., Mueller M., Wolf E., Brem G. (2001). Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol. Reprod. Dev., 60: 362–369.

Zhang L., Huang Y., Wu Y., Si J., Huang Y., Jiang Q., Lan G., Guo Y., Jiang H. (2017). Scriptaid upregulates expression of development-related genes, inhibits apoptosis, and improves the development of somatic cell nuclear transfer mini-pig embryos. Cell. Reprogram., 19: 19–26.

Zhang P., Liu P., Dou H., Chen L., Chen L., Lin L., Tan P., Vajta G., Gao J., Du Y., Ma R.Z. (2013). Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS One, 8 (2): e55941.

Zhang Y., Qu P., Ma X., Qiao F., Ma Y., Qing S., Zhang Y., Wang Y., Cui W. (2018). Tauroursodeoxycholic acid (TUDCA) alleviates endoplasmic reticulum stress of nuclear donor cells under serum starvation. PLoS One, 13 (5): e0196785.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information

IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1,246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 25
PDF Downloads 127 127 25