White Tea is More Effective in Preservation of Bone Loss in Adult Rats Co-Exposed to Lead and Cadmium Compared to Black, Red or Green Tea

Open access

Abstract

Lead (Pb) and cadmium (Cd) are toxic metals occurring commonly in the human environment that show mutagenic, genotoxic and carcinogenic effects. Dietary components could prevent heavy metals intoxication by reducing their accumulation in the body. The purpose of the study was to check possible protective effect of regular consumption of white, black, red, or green tea on bone metabolism during long-term exposure to Pb and Cd in adult rats. The 12 week-long exposure to Pb and Cd (50 mg Pb and 7 mg Cd/kg of the diet) in a rat model was studied. Twelve-week-old adult male Wistar rats were randomly divided into a negative control group (Pb and Cd exposure without tea), a control (without Pb and Cd and teas), and groups co-exposed to Pb and Cd and supplemented with green, red, black, or white tea (n=12 each group). The experiment lasted for 12 weeks. The co-exposure to Pb and Cd led to the increase of bone resorption depending on the tea treatment, which was confirmed by the mechanical testing and histomorphometrical examination of cancellous bone. Pb and Cd influenced mechanical strength, reduced the densitometric and geometric parameters and the thickness of growth plate and articular cartilages. Concluding, white tea exerted the best protective effect on bone tissue and hyaline cartilage against heavy metal action.

Brzóska M.M. (2012). Low-level chronic exposure to cadmium enhances the risk of long bone fractures: A study on a female rat model of human lifetime exposure. J. Appl. Toxicol., 32: 34–44.

Brzóska M.M., Rogalska J., Galazyn-Sidorczuk M., Jurczuk M., Roszczenko A., Kulikowska-Karpińska E., Moniuszko-Jakoniuk J. (2007). Effect of zinc supplementation on bone metabolism in male rats chronically exposed to cadmium. Toxicology, 237: 89–103.

Chen X., Zhu G., Jin T., Lei L., Liang Y. (2011). Bone mineral density is related with previous renal dysfunction caused by cadmium exposure. Environ. Toxicol. Pharmacol., 32: 46–53.

Cretacci Y., Parsons P.J. (2010). Localized accumulation of lead within and among bones from lead-dosed goats. Environ. Res., 110: 26–32.

Dermience M., Lognay G., Mathieu F., Goyens P. (2015). Effects of thirty elements on bone metabolism. J. Trace. Elem. Med. Biol., 32: 86–106.

Devine A., Hodgson J.M., Dick I.M., Prince R.L. (2007). Tea drinking is associated with benefits on bone density in older women. Am. J. Clin. Nutr., 86: 1243–1247.

Dobrowolski P., Tomaszewska E., Kurlak P., Pierzynowski S.G. (2016). Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats. Exp. Biol. Med., 241: 14–24.

Duranova H., Martiniakova M., Imelka R., Grosskopf B., Bobonova I., Toman R. (2014). Changes in compact bone microstructure of rats subchronically exposed to cadmium. Acta. Vet. Scand., 56: 64.

EFSA (2012 a). Lead dietary exposure in the European population. EFSA J., 10: 2831.

EFSA (2012 b). Cadmium dietary exposure in the European population. EFSA J., 10: 2551.

Gaur S., Agnihorti R. (2014). Green tea: a novel functional food for the oral health of older adults. Geriatr. Gerontol. Int., 14: 238–250.

Green C.J., de Dauwe P., Bpyle T., Tabatabaei S.M., Fritschi L., Heyworth S. (2014). Tea, coffee, and milk consumption and colorectal cancer risk. J. Epidemiol., 24: 146–153.

Gülçin I., Huyut Z., Elmastaş M., Aboul-Enein H.Y. (2010). Radical scavenging and antioxidant activity of tannic acid. Arabian J. Chem., 3: 43–53.

Hilal Y., Engelhardt U. (2007). Characterization of white tea – Comparison to green and black tea. J. Verbr. Lebensm., 2: 414–421.

Hogervorst J., Plusquin M., Vangronsveld J., Nawrot T., Cuypers A., Van Hecke E., Roels H.A., Carleer R., Staessen J.A. (2007). House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res., 103: 30–37.

James K.A., Meliker J.R. (2013). Environmental cadmium exposure and osteoporosis: a review. Int. J. Public Health., 58: 737–745.

Khalaf A.A., Moselhy W.A., Abdel-Hamed M.I. (2012). The protective effect of green tea extract on lead induced oxidative and DNA damage on rat brain. Neurotoxicol., 33: 280–289.

Lattouf R., Younes R., Lutomski D., Naaman N., Godeau G., Senni K., Changotade S. (2015). Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem., 62: 751–758.

Lim H.S., Lee H.H., Kim T.H., Lee B.R. (2016). Relationship between heavy metal exposure and bone mineral density in Korean adult. J. Bone Metab., 23: 223–231.

Maeda-Yamamoto M. (2013). Human clinical studies of tea polyphenols in allergy or life style-related diseases. Curr. Pharm. Des., 19: 6148–6155.

Muszyński S., Kwiecień M., Tomaszewska E., Świetlicka I., Dobrowolski P., Kasperek K., Jeżewska-Witkowska G. (2017). Effect of caponization on performance and quality characteristics of long bones in Polbar chickens. Poultry Sci., 96: 491–500.

Niedzwiecki A., Roomi M.W., Kalinovsky T., Rath M. (2016). Anticancer efficacy of polyphenols and their combinations. Nutrients, 8: E552.

Pemmer B., Roschger A., Wastl A., Hofstaetter J.G., Wobrauschek P., Simon R., Thaler H.W., Roschger P., Klaushofer K., Streli C. (2013). Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone, 57: 184–193.

Quinn T.M., Morel V. (2007). Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage. Biomech. Model. Mechanobiol., 6: 73–82.

Reeves P.G., Nielsen F.H., Fahey Jr. G.C. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr., 123: 1939–1951.

Shen C.L., Yeh J.K., Cao J.J., Chyu M.C., Wang J.S. (2011). Green tea and bone health: Evidence from laboratory studies. Pharmacol. Res., 64: 155–161.

Shen C.L., Chyu M.C., Wang J.S. (2013). Tea and bone health: steps forward in translational nutrition. Am. J. Clin. Nutr., 98: 1694S–1699S.

Sheng J., Qu X., Zhang X., Zhai Z., Li H., Liu X., Li H., Liu G., Zhu Z., Hao Y., Qin A., Dai K. (2014). Coffee, tea, and the risk of hip fracture: a meta-analysis. Osteoporos. Int., 25: 141–150.

Suvara S.K., Layton C., Bancroft J.D. (2013). Bancroft’s theory and practice of histological techniques. Edinburgh, Churchill Livingstone, 7th ed., pp. 654.

Śliwa E. (2010). 2-Oxoglutaric acid administration diminishes fundectomy-induced osteopenia in pigs. J. Anim. Physiol. Anim. Nutr., 94: e86–e95.

Śliwa E., Kowalik S., Tatara M.R., Krupski W., Majcher P., Łuszczewska-Sierakowska I., Pierzynowski S.G., Studziński T. (2005). Effect of alpha-ketoglutarate (AKG) given to pregnant sows on development of humerus and femur in newborns. Bull. Vet. Instit. Pulawy., 49: 117–120.

Śliwa E., Tatara M.R., Nowakowski H., Pierzynowski S.G., Studziński T. (2006). Effect of maternal dexamethasone and alpha-ketoglutarate administration on skeletal development during the last three weeks of prenatal life in pigs. J. Matern. Fetal Neonatal Med., 19: 489–493.

Tomaszewska E., Dobrowolski P., Siwicki A. (2012 a). Maternal treatment with dexa-methasone at minimal therapeutic doses inhibits neonatal bone development in a gender-dependent manner. Livest. Sci., 146: 175–182.

Tomaszewska E., Dobrowolski P., Wydrych J. (2012 b). Postnatal administration of 2-oxoglutaric acid improves articular and growth plate cartilages and bone tissue morphology in pigs prenatally treated with dexamethasone. J. Physiol. Pharmacol., 63: 547–554.

Tomaszewska E., Dobrowolski P., Puzio I. (2013). Morphological changes of the cartilage and bone in newborn piglets evoked by experimentally induced glucocorticoid excess during pregnancy. J. Anim. Physiol. Anim. Nutr., 97: 785–796.

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 a). The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. Environ. Toxicol. Pharmacol., 40: 708–714.

Tomaszewska E., Winiarska-Mieczan A., Dobrowolski P. (2015 b). Hematological and serum biochemical parameters of blood in adolescent rats and histomorphological changes in the jejunal epithelium and liver after chronic exposure to cadmium and lead in the case of supplementation with green tea vs black, red or white tea. Exp. Toxicol. Pathol., 67: 331–339.

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S., Radzki R. (2016). Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. Environ. Toxicol. Pharmacol., 46: 36–44.

Tomaszewska E., Dobrowolski P., Winiarska-Mieczan A., Kwiecień M., Tomczyk A., Muszyński S. (2017 a). The effect of tannic acid on the bone tissue of adult male Wistar rats exposed to cadmium and lead. Exp. Toxicol. Pathol., 69: 131–141.

Tomaszewska E., Kwiecień M., Muszyński S., Dobrowolski P., Kasperek K., Blicharski T., Jeżewska-Witkowska G., Grela E. R. (2017 b). Long-bone properties and development are affected by caponisation and breed in Polish fowls. Brit. Poultry Sci., 58: 312–318.

WHO (1992). Environmental health criteria 134: Cadmium. Geneva, World Health Organization, pp. 280.

Zhang Z.F., Yang J.L., Jiang H.C., Lai Z., Wu Z., Liu Z.X. (2017). Updated association of tea consumption and bone mineral density: A meta-analysis. Medicine, 96: e6437.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 27
PDF Downloads 119 119 20