Characterization of Three Generations of Transgenic Pigs Expressing the HLA-E Gene

Magdalena Hryhorowicz 1 , Joanna Zeyland 1 , Agnieszka Nowak-Terpiłowska 1 , Jacek Jura 2 , Wojciech Juzwa 3 , Ryszard Słomski 1 , 4 , Jan Bocianowski 5 , Zdzisław Smorąg 2 , Anna Woźniak 6  and Daniel Lipiński 1
  • 1 Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, 60-632, Poznań, Poland
  • 2 Department of Animal Reproduction, National Research Institute of Animal Production, , 32-083, Kraków, Poland
  • 3 Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 60-627, Poznań, Poland
  • 4 Institute of Human Genetics, Polish Academy of Sciences, , 60-101, Poznań, Poland
  • 5 Department of Mathematical and Statistical Methods, Poznan University of Life Sciences, 60-637, Poznań, Poland
  • 6 The NanoBioMedical Centre, Adam Mickiewicz University, 61-614, Poznań, Poland


The use of pigs as a source of organs and tissues for xenotransplantation can overcome the growing shortage of human donors. Human NK cells play an important role in the cell-mediated rejection of pig-to-human xenografts. In this paper we report the generation and extensive characterization of three generations of transgenic pigs with HLA-E gene encoding the antigen which can inhibit the human NK cell-mediated response. The gene construct pHLAE-GFPBsd containing the human gene encoding the human leukocyte antigen under the promoter of the EF-1α elongation factor ensuring systemic expression was introduced by microinjection into a pronucleus of the fertilized porcine oocyte. PCR analysis revealed and FISH analysis confirmed that the pHLAE-GFPBsd gene construct was present in the genome of the founder female pig. As a result of inter-breeding, an additional 7 transgenic animals were obtained (one individual from F1 generation and six individuals from F2 generation). The transgene expression was shown by RT-PCR and flow cytometry. Real Time PCR analysis estimated the approximate number of transgene copies at 16–34. Karyotype analysis did not show any changes in the structure or the number of chromosomes. The expression level of the transgene was stable in the next generation of genetically modified pigs. An NK cell-mediated cytotoxicity assay showed the increased viability of the transgenic cells in comparison with the wild-type, which confirmed the protective influence of HLA-E expression.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bongoni A.K., Kiermeir D., Jenni H., Bähr A., Ayares D., Klymiuk N., Wolf E., Voegelin E., Constantinescu M.A., Seebach J.D., Rieben R. (2014). Complement dependent early immunological responses during ex vivo xenoperfusion of hCD46/HLA-E double transgenic pig forelimbs with human blood. Xenotransplantation, 21: 230–243.

  • Chomczynski P., Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal. Biochem., 162: 156–159.

  • Clark A.J., Bissinger P., Bullock D.W., Damak S., Wallace R., Whitelaw C.B., Yull F. (1994). Chromosomal position effects and the modulation of transgene expression. Reprod. Fert. Develop., 6: 589–598.

  • Folger K.R., Wong E.A., Wahl G., Capecchi M.R. (1982). Patterns of integration of DNA microinjectes into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell Biol., 2: 1372–1387.

  • Forte P., Matter-Reissmann U.B., Strasser M., Schneider M.K., Seebach J.D. (2000). Porcine aortic endothelial cells transfected with HLA-G are partially protected from xeno-geneic human NK cytotoxicity. Hum. Immunol., 61: 1066–1073.

  • Forte P., Lilienfeld B.G., Baumann B.C., Seebach J.D. (2005). Human NK cytotoxicity against porcine cells is triggered by NKp44 and NKG2D. J. Immunol., 175: 5463–5470.

  • Forte P., Baumann B.C., Schneider M.K., Seebach J.D. (2009). HLA-Cw4 expression on porcine endothelial cells reduces cytotoxicity and adhesion mediated by CD158a+ human NK cells. Xenotransplantation, 16: 19–26.

  • Garrick D., Fiering S., Martin D.I., Whitelaw E. (1998). Repeat-induced gene silencing in mammals. Nat. Genet., 18: 56–59.

  • Grassi G., Maccaroni P., Meyer R., Kaiser H., D ‘ Ambrosio E., Pascale E., Gras-si M., Kuhn A., Di Nardo P., Kandolf R., Küpper J.H. (2003). Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis, 24: 1625–1635.

  • Gustavsson I. (1988). Standard karyotype of the domestic pig. Committee for the Standardized Karyotype of the Domestic Pig. Hereditas, 109: 151–157.

  • Haruyama N., Cho A., Kulkarni A.B. (2009). Overview: engineering transgenic constructs and mice. Curr. Protoc. Cell Biol., 42: 19.10.

  • Itescu S., Kwiatkowski P., Wang S.F., Blood T., Minanov O.P., Rose S., Mich-ler R.E. (1996). Circulating human mononuclear cells exhibit augmented lysis of pig endothelium after activation with interleukin 2. Transplantation, 62: 1927–1933.

  • Kearns M., Preis J., Mc Donald M., Morris C., Whitelaw E. (2000). Complex patterns of inheritance of an imprinted murine transgene suggest incomplete germline erasure. Nucleic Acids Res., 28: 3301–3309.

  • Khalfoun B., Barrat D., Watier H., Machet M.C., Arbeille-Brassart B., Riess J.G., Salmon H., Gruel Y., Bardos P., Lebranchu Y. (2000). Development of an ex vivo model of pig kidney perfused with human lymphocytes. Analysis of xenogeneic cellular reactions. Surgery, 128: 447–457.

  • Kim D.W., Uetsuki T., Kaziro Y., Yamaguchi N., Sugano S. (1990). Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene, 91: 217–223.

  • Kong Q., Wu M., Huan Y., Zhang L., Liu H., Bou G., Luo Y., Mu Y., Liu Z. (2009). Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One., 4(8): e6679.

  • Laird C.T., Burdorf L., French B.M., Kubicki N., Cheng X., Braileanu G., Sun W., O ‘ Neill N.A., Cimeno A., Parsell D., So E., Bähr A., Klymiuk N., Phelps C.J., Ayares D., Azimzadeh A.M., Pierson R.N. (2017). Transgenic expression of human leukocyte antigen-E attenuates GalKO.hCD46 porcine lung xenograft injury. Xenotransplantation, 24: e12294.

  • Lilienfeld B.G., Crew M.D., Forte P., Baumann B.C., Seebach J.D. (2007). Transgenic expression of HLA-E single chain trimer protects porcine endothelial cells against human natural killer cell mediated cytotoxicity. Xenotransplantation, 14: 126–134.

  • Maeda A., Kawamura T., Ueno T., Usui N., Eguchi H., Miyagawa S. (2013). The suppression of inflammatory macrophage-mediated cytotoxicity and proinflammatory cytokine production by transgenic expression of HLA-E. Transpl. Immunol., 29: 76–81.

  • Norrman K., Fischer Y., Bonnamy B., Wolfhagen Sand F., Ravassard P., Semb H. (2010). Quantitative comparison of constitutive promoters in human ES cells. PLoS One., 5: e12413.

  • Parkányi V., Chrenek P., Rafay J., Süvegová K., Jurcík R., Makarevich A.V., Pivko J., Hetényi L., Paleyanda R.K. (2004). Aneuploidy in the transgenic rabbit. Folia Biol., 50: 194–199.

  • Petersen B., Lucas-Hahn A., Oropeza M., Hornen N., Lemme E., Hassel P., Queisser A.L., Niemann H. (2008). Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells, 10: 355–362.

  • Prather R.S., Shen M., Dai Y. (2008). Genetically modified pigs for medicine and agriculture. Bio-technol. Genet. Eng. Rev., 25: 245–265.

  • Puga Yung G., Schneider M.K.J., Seebach J.D. (2017). The role of NK cells in pig-to-human xenotransplantation. J. Immunol. Res., 2017: 4627384, doi: 10.1155/2017/4627384.

  • Robertson G., Garrick D., Wilson M., Martin D.I., Whitelaw E. (1996). Age-depen dent silencing of globin transgenes in the mouse. Nucleic Acids Res., 24: 1465–1471.

  • Seebach J.D., Comrack C., Germana S., Le Guern C., Sachs D.H., Der Simonia n H. (1997) HLA-Cw3 expression on porcine endothelial cells protects against xenogeneic cytotoxicity mediated by a subset of human NK cells. J. Immunol., 159: 3655–3661.

  • Sullivan J.A., Oettinger H.F., Sachs D.H., Edge A.S. (1997). Analysis of polymorphism in porcine MHC class I genes: alterations in signals recognized by human cytotoxic lymphocytes. J. Immunol., 159: 2318–2326.

  • Taboit-Dameron F., Malassagne B., Viglietta C., Puissant C., Leroux-Coyau M., Chéreau C., Attal J., Weill B., Houdebine L.M. (1999). Association of the 5’HS4 sequence of the chicken beta-globin locus control region with human EF1 alpha gene promoter induces ubiquitous and high expression of human CD55 and CD59 cDNAs in transgenic rabbits. Transgenic Res., 8: 223–235.

  • Wang Y., Du Y., Shen B., Zhou X., Li J., Liu Y., Wang J., Zhou J., Hu B., Kang N., Gao J., Yu L., Huang X., Wei H. (2015). Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA. Sci Rep., 5: 8256.

  • Weiss E.H., Lilienfeld B.G., Muller S., Müller E., Herbach N., Kessler B., Wan-ke R., Schwinzer R., Seebach J.D., Wolf E., Brem G. (2009). HLA-E/human beta2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity. Transplantation, 87: 35–43.

  • Zeyland J., Hryhorowicz M., Nowak-Terpiłowska A., Jura J., Słomski R., Smorąg Z., Gajda B., Lipiński D. (2018). The production of UL16-binding protein 1 targeted pigs using CRISPR technology. 3 Biotech., 8: 70, doi: 10.1007/s13205-018-1107-4.


Journal + Issues