Analysis of the Methylation Status of CpG Sites Within Cancer-Related Genes in Equine Sarcoids

Ewelina Semik-Gurgul 1 , Tomek Ząbek 1 , Agnieszka Fornal 1 , Artur Gurgul 1 , Klaudia Pawlina-Tyszko 1 , Jolanta Klukowska-Rötzler 2 , 3  and Monika Bugno-Poniewierska 1 , 4
  • 1 Department of Animal Molecular Biology, National Research Institute of Animal Production, , 32-083, Kraków, Poland
  • 2 Swiss Institute of Equine Medicine, ALP-Haras, University of Berne, CH-3001, Berne, Switzerland
  • 3 Department of Emergency Medicine, University Hospital Bern, , 3010, Bern, Switzerland
  • 4 Institute of Veterinary Sciences, University of Agriculture in Krakow, 30-059, Kraków, Poland


In the recent years, particular attention was given to the research aimed at optimizing the use of tumour epigenetic markers. One of the best known epigenetic changes associated with the process of carcinogenesis is aberrant DNA methylation. The aim of the present research was to evaluate the methylation profile of genes potentially important in the diagnosis and/or prognosis of equine sarcoids, the most commonly detected skin tumours in Equidae. The methylation status of potential promoter sequences of nine genes: APC, CCND2, CDKN2B, DCC, RARβ, RASSF1, RASSF5, THBS1 and TRPM1, was determined using bisulfite sequencing polymerase chain reaction (BSP-CR). The results of this study did not reveal any changes in the level of DNA methylation in the analysed group of candidate genes between the tumour and healthy tissues. Despite numerous reports describing the aberrant methylation of the promoters of the analysed genes in human cancers, the data obtained did not confirm the existence of such relationships in the examined tumour tissues, which excludes the possibility of using these genes for the diagnosis of the equine sarcoid.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agrawal A., Murphy R.F., Agrawal D.K. (2007). DNA methylation in breast and colorectal cancers. Mod. Pathol., 20: 711–721.

  • Altamura G., Strazzullo M., Corteggio A., Francioso R., Roperto F., D ‘ Esposto M., Borzacchiello G. (2012). O(6)-methylguanine-DNA methyltransferase in equine sarcoids: molecular and epigenetic analysis. BMC Vet. Res., 8: 218.

  • Bogaert L., van Heerden M., de Cock H.E.V., Martens A., Chiers K. (2011). Molecular and immunohistochemical distinction of equine sarcoid from schwannoma. Vet. Pathol., 48: 737–741.

  • Bonazzi V.F., Nancarrow D.J., Stark M.S., Moser R.J., Boyle G.M., Aoude L.G., Schmidt C., Hayward N.K. (2011). Cross-platform array screening identifies COL1A2, THBS1, TNFRSF10D and UCHL1 as genes frequently silenced by methylation in melanoma. PLoS One, 6:e26121.

  • Boultwood J., Wainscoat J.S. (2007). Gene silencing by DNA methylation in haematological malignancies. Brit. J. Haematol., 138: 3–11.

  • Broström H. (1995). Equine sarcoids. A clinical and epidemiological study in relation to equine leucocyte antigens (ELA). Acta Vet. Scan., 36: 223–236.

  • Carvalho A.L., Jeronimo C., Kim M.M., Henrique R., Zhang Z., Hoque M.O., Chang S., Brait M., Nayak C.S., Jiang W.W., Claybourne Q., Tokumaru Y., Lee J., Goldenberg D., Garrett-Mayer E., Goodman S., Moon C.S., Koch W., Wes-tra W.H., Sidransky D., Califano J.A. (2008). Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin. Cancer Res., 14: 97–107.

  • Chambers G., Ellsmore V.A., O ‘ Brien P.M., Reid S.W.J., Love S., Campo M.S., Nasir L. (2003). The association of bovine papillomavirus with equine sarcoids. J. Gen. Virol., 84: 1055–1062.

  • Chan M.W., Chan L.W., Tang N.L., Lo K.W., Tong J.H., Chan A.W., Cheung H.Y., Wong W.S., Chan P.S., Lai F.M., To K.F. (2003). Frequent hypermethylation of promoter region of RASSF1A in tumor tissues and voided urine of urinary bladder cancer patients. Int. J. Cancer., 104: 611–616.

  • Chen K., Sawhney R., Khan M., Benninger M.S., Hou Z., Sethi S., Stephen J.K., Worsham M.J. (2007). Methylation of multiple genes as diagnostic and therapeutic markers in primary head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg., 133: 1131–1138.

  • Christiansen D.H., Andersen M.K., Pedersen-Bjergaard J. (2003). Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia, 17: 1813–1819.

  • Das P.M., Singal R. (2004). DNA methylation and cancer. J. Clin. Oncol., 22: 4632–4642.

  • Djos A., Martinsson T., Kogner P., Carén H. (2012). The RASSF gene family members RASSF5, RASSF6 and RASSF7 show frequent DNA methylation in neuroblastoma. Mol. Cancer, 11: 40.

  • Epperson E.D., Castleman W.L. (2017). Bovine papillomavirus DNA and S100 profiles in sarcoids and other cutaneous spindle cell tumors in horses. Vet. Pathol., 54: 44–52.

  • Esteller M. (2005). Aberrant DNA methylation as a cancer-inducing mechanism. Annu. Rev. Pharmacol. Toxicol., 45: 629–656.

  • Evron E., Umbricht C.B., Korz D., Raman V., Loeb D.M., Niranjan B., Buluwe-la L., Weitzman S.A., Marks J., Sukumar S. (2001). Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res., 61: 2782–2787.

  • Fendri A., Masmoudi A., Khabir A., Sellami-Boudawara T., Daoud J., Frik-ha M., Ghorbel A., Gargouri A., Mokdad-Gargouri R. (2009). Inactivation of RASS-F1A, RARβeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol. Ther., 8: 444–451.

  • Furuta J., Umebayashi Y., Miyamoto K., Kikuchi K., Otsuka F., Sugimura T., Ushijima T. (2004). Promoter methylation profiling of 30 genes in human malignant melanoma. Cancer Sci., 95: 962–968.

  • Gonzalez-Gomez P., Bello M.J., Alonso M.E., Amiñoso C., Lopez-Marin I., De Campos J.M., Isla A., Gutierrez M., Rey J.A. (2004). Promoter methylation status of multiple genes in brain metastases of solid tumors. Int. J. Mol. Med., 13: 93–98.

  • Guo H., Carlson J.A., Slominski A. (2012). Role of TRPM in melanocytes and melanoma. Exp. Dermatol., 21: 650–654.

  • Hoon D.S., Spugnardi M., Kuo C., Huang S.K., Morton D.L., Taback B. (2004). Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene, 23: 4014–4022.

  • Leakey T., Zielinski J., Siegfried R.N., Siegel E.R., Fan C.Y., Cooney C.A. (2008). A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms. Nucleic Acids Res., 36: e64.

  • Lee M.G., Kim H.Y., Byun D.S., Lee S.J., Lee C.H., Kim J.I., Chang S.G., Chi S.G. (2001). Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res., 61: 6688–6692.

  • Li Q., Ahuja N., Burger P.C., Issa J.P. (1999). Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene, 18: 3284–3289.

  • Lindner D.J., Wu Y., Haney R., Jacobs B.S., Fruehauf J.P., Tuthill R., Borden E.C. (2013). Thrombospondin-1 expression in melanoma is blocked by methylation and targeted reversal by 5-Aza-deoxycytidine suppresses angiogenesis. Matrix Biol., 32: 123–132.

  • Lunardi M., de Alcântara B.K., Otonel R.A., Rodrigues W.B., Alfieri A.F., Alfieri A.A. (2013). Bovine papillomavirus type 13 DNA in equine sarcoids. J. Clin. Microbiol., 51: 2167–2171.

  • Maruya S., Issa J.P., Weber R.S., Rosenthal D.I., Haviland J.C., Lotan R., El-Naggar A.K. (2004). Differential methylation status of tumor-associated genes in head and neck squamous carcinoma: incidence and potential implications. Clin. Cancer Res., 10: 3825–3830.

  • Maruyama R., Toyooka S., Toyooka K.O., Harada K., Virmani A.K., Zochbauer-Muller S., Farinas A.J., Vakar-Lopez F., Minna J.D., Sagalowsky A., Czer-niak B., Gazdar A.F. (2001). Aberrant promoter methylation profile of bladder cancer and its relationship to clinicopathological features. Cancer Res., 61: 8659–8663.

  • Melnikov A., Shrestha S., Yi Q., Replogle C., Borgia J., Bonomi P., Liptay M., Ugolini D., Neri M., Verri C., Sozzi G., Levenson V. (2014). Non-small cell lung cancer can be detected and its subtypes differentiated by a blood test of methylation in cell-free DNA from plasma. JSM Biomar., 1: 1003.

  • Ogi K., Toyota M., Ohe-Toyota M., Tanaka N., Noguchi M., Sonoda T., Koha-ma G., Tokino T. (2002). Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin. Cancer Res., 8: 3164–3171.

  • Oshimo Y., Nakayama H., Ito R., Kitadai Y., Yoshida K., Chayama K., Yasui W. (2003). Promoter methylation of cyclin D2 gene in gastric carcinoma. Int. J. Oncol., 23: 1663–1670.

  • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

  • Rohde C., Zhang Y., Reinhardt R., Jeltsch A. (2010). BISMA – fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics, 11: 230.

  • Spugnardi M., Tommasi S., Dammann R., Pfeifer G.P., Hoon D.S. (2003). Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res., 63: 1639–1643.

  • Strazzullo M., Corteggio A., Altamura G., Francioso R., Roperto F., D ‘ Esposi-to M., Borzacchiello G. (2012). Molecular and epigenetic analysis of the fragile histidine triad tumour suppressor gene in equine sarcoids. BMC Vet. Res., 8: 30.

  • Virmani A.K., Rathi A., Sathyanarayana U.G., Padar A., Huang C.X., Cunnig-ham H.T., Farinas A.J., Milchgrub S., Euhus D.M., Gilcrease M., Herman J., Minna J.D., Gazdar A. F. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin. Cancer Res., 7: 1998–2004.


Journal + Issues