Air Ionization in Livestock Buildings – A Review

Eugeniusz Herbut 1 , Ewa Sosnówka-Czajka 1  and Iwona Skomorucha 1
  • 1 Department of Poultry Breeding, National Research Institute of Animal Production, , 32-083, Kraków, Poland


Research has shown that microclimate is determined not only by air microparticles, but also by the degree of air ionization. Ions affect the body through the respiratory tract and skin. Exposure of reared chickens to elevated air temperature (37°C–23°C) was found to accelerate the break-down of negative ions compared to temperature lower by 10°C. Negative air ionization offsets the adverse effect of elevated temperature on chickens. Higher (85%) air humidity during rearing of chickens was also observed to destroy negative ions. Research findings indicate that air ionization is an environmental element that contributes to improving performance in broiler chickens. Many studies have also confirmed a positive effect of air ionization on the body weight and health of piglets.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alonso C., Raynor P.C., Davies P.R., Morrison R.B., Torremorell M. (2016). Evaluation of an electrostatic particle ionization technology for decreasing airborne pathogens in pigs. Aerobiologia, 32: 405–419.

  • Arnold J.W. (2004). Use of negative air ionization for reducing bacterial pathogens and spores on stainless steel surfaces. J. Appl. Poultry Res., 13: 200–206.

  • Asaj A. (1987). The influence of negative air ionization on domestic animals. Proc. Int. Symp.: Micro-physical problems in biology versus animal hygiene, Kraków, Poland, 1–3.06.1987.

  • Bailey W.H., Williams A.L., Leonhard M.J. (2018). Exposure of laboratory animals to small air ions: a systematic review of biological and behavioral study. BioMed Eng OnLine, 17: 72.

  • Banhazi T., Aland A., Hartung J. (2018). Editors. Air quality and livestock farming. CRC Press, 372 pp.

  • Brigmon R.L., Mather F.B. (1992). Seasonal temperature and its influence on plasma corticosteone, triiodothyronine, thyroxine, plasma protein and packed cell volume in mature male chickens. Comp. Broch. Physiol., 102: 289–293.

  • Cambra-López M., Winkel A., Harn J. Van, Ogink N.W.M., Aarnink A.J.A. (2009). Ionization for reducing particulate matter emissions from poultry houses. Transactions of the ASABE, 52: 1757–1771.

  • Gast R.K., Bailey W., Mitchell W., Holt P.S. (1999). Application of negative air ionization for reducing experimental airborne transmission of Salmonella enteritidis to chicks. Poultry Sci., 78: 57–61.

  • Goel N., Terman M., Terman J.S., Macchi M.M., Stewart J.W. (2005). Controlled trial of bright light and negative air ions for chronic depression. Psychol. Med., 35: 1–11.

  • Hagbom M., Nordgren J., Nybom R., Heldlund K.O., Wigzell H., Svensso n L. (2015). Ionizing air affects influenza virus infectivity and prevents airborne-transmission. Sci. Rep., 23: 1–10.

  • Hagen D. (2012). Ionic system aids air quality for nursery pigs. Feedstuffs, 26: 16–21.

  • Herbut E., Nizioł B., Pietras M. (1995). Preliminary studies on the effect of thermal environment and air ionization on selected haematological parameters and productivity of broiler chickens (in Polish). Rocz. Nauk. Zoot., 22: 395–403.

  • Herbut E., Nizioł B., Pietras M., Sosnówka E. (1997 a). Effect of humidity and artificial air ionization on negative ion concentration and performance of broiler chickens (in Polish). Rocz. Nauk. Zoot., 24: 181–188.

  • Herbut E., Nizioł B., Sosnówka E., Pietras M. (1997 b). Effect of thermal conditions on air ionization and rearing performance of broiler chickens (in Polish). Rocz. Nauk. Zoot., 24: 301–306.

  • Huynh T.T.T., Aarnink A.J.A., Verstegen M.W.A., Gerrits W.J.J., Heetkamp M.J.W., Kemp B., Canh T.T. (2005). Effects of increasing temperatures on physiological changes in pig different relative humidities. J. Anim. Sci., 83: 1385–1396.

  • Iwama H. (2004). Negative air ions created by water shearing improve erythrocyte deformability and aerobic metabolism. Indoor Air, 14: 293–297.

  • Janowski T., Nizioł B., Zimmal S. (1989). Studies on air ionization in poultry houses with different degrees of ventilation (in Polish). Acta Agr. Silv. Zoot., 28: 19–23.

  • Jovanić B.R., Jovanić S.B. (2001). The effect of high concentration of negative ions in the air on the chlorophyll content in plant leaves water. Air Soil Pollut., 129: 259–265.

  • Kellog E.W. (1984). Significance of air ions. J. Bioelectr., 3: 119–136.

  • Khrenov N.M. (1987). Artificial aeroionization and its influence on the productivity and reproductive functions of the cow. Proc. Int. Symp.: Microphysical problems in biology versus animal hygiene, Kraków, Poland, 1–3.06.1987.

  • Kolar ž P., Gaisberger M., Madl P., Hofmann W., Ritter M., Hartl A. (2012). Characterization of ions at Alpine waterfalls. Atmos. Chem. Phys., 12: 3687–3697.

  • Krueger A.P. (1985). The biological effect of air ions. Int. J. Biometerol., 29: 205–206.

  • Laza V. (2010). Environmental factors (negative air ions) with beneficial effects on animals and humans. Revista de Igiena Si Sanatate Publica, J. Hyg. Public Health, 60: 62–69.

  • Laza V., Bolboacă S.D. (2008). The effect of negative air ionization exposure on ontogenetic development of chicken. Leonardo El. J. Pract. Technol., 13: 76–87.

  • Laza V., Lotrean L. (2009). Using the negative air generators to improve the animal reactivity. In: Vlad S., Ciupa R.V., Nicu A.I. (eds), MEDITECH 2009, IFMBE Proceedings, 26, pp. 157–162.

  • Lenkiewicz Z., Dąbrowska B., Schiffer Z. (1989). The influence of negative ionization of the air on motor activity in Syrian hamsters (Masocricetus auratus Waterhouse) in light conditions. Int. J. Biometorol., 33: 251–258.

  • Mitchell B.W., Holt P.S., Seo K.H. (2000). Reducing dust in a caged layer room: An electrostatic space charge system. J. Appl. Poultry Res., 9: 292–296.

  • Mitchell B.W., Richardson J., Wilson J., Hofacre C. (2004). Application of an electrostatic space charge system for dust, ammonia and pathogen reduction in a broiler breeder house. App. Eng. Agric., 20: 87–93.

  • Moga M., Małecka I. (2011). The effect of differentiated air on the human organism (in Polish). Zesz. Nauk. Inż. Ląd. Wod. Kształt. Środow., 4: 26–29.

  • Nizioł B. (1987). The composition of air-ions and their effect on human and animal organisms. Proc. Int. Symp.: Microphysical problems in biology versus animal hygiene. Kraków, Poland, 1–3.06.1987.

  • Pająk T. (2011). Effect of air ionization on the microclimate, well-being and productivity of pigs (in Polish). Praca doktorska, IZ PIB, Kraków-Balice.

  • Patil V.N., Patil B.P., Shimpi N.G. (2014). Effect of negative ionization on egg incubation and burn patient. Wulfenia, 21: 125–142.

  • Pawar S.D., Meena G.S., Jadha v D.B., (2012). Air ion variation at poultry-farm, coastal, mountain, rural and urban sites in India. Aerosol Air Qual. Res., 12: 440–451.

  • Rademacher C., Bradley G., Pollmann S., Coffelt B., Baumgartner M., Baumgartner J., (2012). Electrostatic particle ionization (EPI) improves nursery pig performance and air quality. Proc. AASV. Integrating Science, Welfare, and Economics in Practice, Denver USA, pp. 257–258.

  • Richardson L.J., Hofacre C.L., Mitchell B.W., Wilson J.L. (2003). Effect of electrostatic space charge on reduction of airborne transmission of Salmonella and other bacteria in broiler breeders in production and their progeny. Avian Dis., 47: 1352–1361.

  • Ritz C.W., Mitchel B.W., Fairchild B.D., Czarick M., Worley J.W. (2006). Improving in-house air quality in broiler production facilities using an electrostatic space charge system. J. Appl. Poultry Res., 15: 333–340.

  • Skromulis A., Noviks G. (2012). Atmospheric light air ion concentrations and related meteorological factors in Rezekne City, Latvia. J. Environ. Boil., 33: 455–462.

  • Wakamura T., Sato M., Dohi T., Ozaki K., Ason N., Hagata S., Tokura H. (2004). A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep. Int. J. Occup. Med. Env., 17: 295–298.

  • Walczak J., Herbut E. (2000). The use of telemetric measurement of biophysical parameters for evaluating the response of growing pigs to different management systems. Ann. Anim. Sci., 27: 231–239.

  • Wallner P., Kundi M., Panny M., Tappler P., Hutter H.P. (2015). Exposure to air ions in indoor environments: experimental study with healthy adults. Int. J. Environ. Res. Public Health, 12: 14301–14311.

  • Wiszniewski A., Suchanowski A. (2008). Influence of air-ions on people subjected to physical effort and at rest. Pol. J. Environ. Stud., 17: 801–810.

  • Wiszniewski A., Suchanowski A., Wielgomas B. (2014). Effects of air-ions on human circulatory indicators. Pol. J. Environ. Stud., 23: 521–531.


Journal + Issues