Silver and Zinc Nanoparticles in Animal Nutrition – A Review

Open access

Abstract

The use of metal nanoparticles as supplements of animal diets does not always bring unambiguous results. There are many reports in the literature about the multifaceted effects of this type of supplementation on the animal organism. Therefore, the aim of the paper is to present the current knowledge of the possible application of nanometal forms in animal nutrition and its potential benefits and threats. The positive effect of nanoparticles used as feed additives has most frequently been reflected in an increase in body weight, higher average daily gain, or improvement of the FCR value. In some cases, however, the effect of nanoparticle addition to diets was indiscernible. The potent antibacterial activity of nanoparticles, especially against Gram-negative bacteria and Gram-positive bacteria, is regarded as a positive effect. In turn, the probability of their toxicity is a potential risk in application thereof. Supplementation of diets with nanometals has been accompanied by pathological changes in animal tissues, primarily in the pancreas, kidney, liver, rumen, abomasum, small intestine, adrenal glands, and brain. Additionally, at the the cellular level, nanoparticles were found to induce toxicity, inflammatory excitation, and cell death. Oral administration of nanoparticles induced a risk of malfunction of the nervous system and even impairment of cognitive processes in animals. The increasing knowledge of the possible toxic effects of nanoparticles on the animal organism suggests caution in their use in animal production and necessitates further precise investigations in this area.

Adams L.K., Lyon D.Y., Alvarez P.J.J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res., 40: 3527–3532.

Ahmadi J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Ap. Sci. J., 7: 24–27.

Ahmadi F., Branch S. (2012). Impact of different levels of silver nanoparticles (Ag-NPs) on performance, oxidative enzymes and blood parameters in broiler chicks. Pak. Vet. J., 32: 325–328.

Ahmadi F., Khah M.M., Javid S., Zarneshan A., Akradi L., Salehifar P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. Inter. J. Biosci, 3: 95–100.

Al-Yasiry A.R.M., Kiczorowska B., Samolińska W. (2017). The nutritional value and content of mineral elements in meat of broiler chicken feed diets supplemented with Boswellia serrata. J. Elem., 22: 1027–1037.

Antonelli M., De Pascale G., Ranieri V.M., Pelaia P., Tufano R., Piazza O., Zangrillo A., Ferrario A., De Gaetano A., Guaglianone E., Donelli G. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTiveR) vs conventional catheters in intensive care unit patients. J. Hosp. Infect., 82: 101–107.

Arabi F., Imandar M., Negahdary M., Imandar M., Noughabi M. T., Akbari-dastjerdi H., Fazilati M. (2012). Investigation anti-bacterial effect of zinc oxide nanoparticles upon life of Listeria monocytogenes. Ann. Biol. Res., 7: 3679–3685.

Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. (2007). Effect of silver on burn wound infection control and healing: review of the literature. Burns, 33: 139–148.

Auffan M., Rose J., Bottero J.Y., Lowry G.V., Jolivet J.P., Wiesner M.R. (2009). To wards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4: 634–641.

Boudreau M.D., Imam M.S., Paredes A.M., Bryant M.S., Cunningham C.K., Felton R.P., Jones M.Y., Davis K.J., Olson G.R. (2016). Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily oral gavage administration for 13 weeks. Toxicol. Sci., 150: 131–160.

Buzea C., Pacheco I.I., Robbie K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2: MR17–MR71.

Chen H., Zhao R., Wang B., Cai C., Zheng L., Wang H., Wang M., Ouyang H., Zou X., Chai Z., Zhao Y., Feng W. (2017). The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 8: 80–88.

Chen Y., Chen H., Shi J. (2013). In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 23: 3144–3176.

Chmielowiec-Korzeniowska A., Tymczyna L., Dobrowolska M., Banach M., Nowakowicz-Dębek B., Bryl M., Drabik A., Tymczyna-Sobotka M., Kolejko M. (2015). Silver (Ag) in tissues and eggshells, biochemical parameters and oxidative stress in chickens. Open Chem., 13: 1269–1274.

Choi O., Hu Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Envir. Sci. Tech., 42: 4583–4588.

Choi O., Deng K.K., Kim N.J., Ross L.Jr., Surampalli R.Y., Hu Z. (2008). The inhibitory effects of silver nanoparticles, silver ions and silver chloride colloids on microbial growth. Water Res., 42: 3066–3074.

Chook S.W., Chia C.H., Zakaria S., Ayob M.K., Chee K.L., Huang N.M., Neoh H.M., Lim H.N., Jamal R., Fadhil R.M., Rahman R.A. (2012). Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Res. Lett., 7: 541.

Cui L., Chen P., Chen S., Yuan Z., Yu C., Ren B., Zhang K. (2013). In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal. Chem., 85: 5436–5443.

Curtis A., Wilkinson C. (2001). Nanotechniques and approaches in biotechnology. Mater. Today, 4: 22–28.

Dhas S.P., Shiny P.J., Khan S., Mukherjee A., Chandrasekaran N. (2014). Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol., 54: 916–927.

Diarra M.S., Silversides F.G., Diarrassouba F. (2007). Impact of feed supplementation with antimicrobial agents on growth performance of broiler chickens, Clostridium perfringens and enterococcus counts, and antibiotic resistance phenotypes and distribution of antimicrobial resistance determinants in Escherichia coli isolates. Appl. Environ. Microbiol., 73: 6566–6576.

Dos Santos C.A., Seckler M.M., Ingle A.P., Gupta I., Galdiero S., Galdiero M., Gade A., Rai M. (2014). Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 103: 1931–1944.

Elkloub K., Moustafa M.E., Ghazalah A.A., Rehan A.A.A. (2015). Effect of dietary nanosilver on broiler performance. Int. J. Poult. Sci., 14: 177–182.

EU Recommendation (2011). Recommendation on the definition of a nanomaterial, 696. EU.

Felehgari K., Ahmadi F., Rokhzadi A., Kurdestany A.H., Khah M.M. (2013). The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bull. Env. Pharmacol. Life Sci., 2: 104–108.

Ferket P. (2011). Strategies for finding alternatives to growth promoters. Available from: http://en.engormix.com/MA-poultry-industry/management/articles/strategies-finding-alternatives-growth-t1771/124-p0.htm. Accessed August 1, 2012.

Fondevila M. (2010). Potential use of silver nanoparticles as an additive in animal feeding, silver nanoparticles, Perez D.P. (ed.), InTech, DOI: 10.5772/8509. Available from: http://www.intecho-pen.com/books/silver-nanoparticles/potential-use-of-silver-nanoparticles-as-an-additive-in-animal-feeding

Fondevila M., Herrer R., Casallas M.C., Abecia L., Ducha J.J. (2009). Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim. Feed Sci. Tech., 150: 259–269.

Gallocchio F., Biancotto G., Cibin V., Losasso C., Belluco S., Peters R., van Bemmel G., Cascio C., Weigel S., Tromp P., Gobbo F., Catania S., Ricci A. (2017). Transfer study of silver nanoparticles in poultry production. J. Agric. Food Chem., 65: 3767–3774.

Grela E.R., Kiczorowska B., Samolińska W., Kiczorowski P., Rybiński W., Hanczakowska E. (2017). Chemical composition of chosen leguminous. Part I. Basic nutrients, amino acids, antinutritional factors and antioxidant activity. European Food Res. Tech., 243: 1385–1395.

Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., Filser J., Hensten A., Kneuer K., Maillard J-V., Norppa H., Scheringer M., Wijnh oven S. (2015). Nanosilver: safety, health and environmental effects and role in antimicrobial resistance. Materials Today, 18: 122–123.

Hassanabadi A., Hajati H., Bahreini L. (2012). The effects of nano-silver on performance, carcass characteristics, immune system and intestinal microflora of broiler chickens. Proc. 3rd International Veterinary Poultry Congress.

Hendrickson O.D., Klochkov S.G., Novikova O.V., Bravova I.M., Shevtsova E.F., Safenkova I.V., Zherdev A.V., Bachurin S.O., Dzantiev B.B. (2016). Toxicity of nanosilver in intragastric studies: Biodistribution and metabolic effects. Toxicol. Lett., 241: 184–192.

Houtkooper R.H., Argmann C., Houten S.M., Cantó C., Jeninga E.H., Andreux P.A., Thomas C., Doenlen R., Schoonjans K., Auwerx J. (2011). The metabolic footprint of aging in mice. Sci. Rep., 1: 134.

Hwang M.G., Katayama H., Ohgaki S. (2007). Inactivation of Legionella pneumophila and Pseudomonas aeruginosa: evaluation of the bactericidal ability of silver cations. Water Res., 41: 4097–4104.

Kędziora A., Gerasymchuk Y., Sroka E., Bugała-Płoskońska G., Doroszkiewicz W., Rybak Z., Hreniak D., Wiglusz R., Stręk W. (2013). Use of the materials based on partially reduced graphene-oxide with silver nanoparticle as bacteriostatic and bactericidal agen (in Polish). Polim. Med., 43: 129–134.

Kiczorowska B., Samolińska W., Grela E.R, Andrejk o D. (2015 a). Effect of infrared-irradiated pea seeds in mixtures for broilers on the health status and selected performance indicators of the birds (in Polish). Med. Wet., 71: 583–588.

Kiczorowska B., Samolińska W., Kwiecień M., Winiarska-Mieczan A., Rusinek-Prystupa E., Al-Yasiry A.R.M. (2015 b). Nutritive value and contents of minerals in eggs produced in large-scale, courtyard and organic systems. J. Elem., 20: 887–898.

Kiczorowska B., Samolińska W., Andrejk o D. (2016 a). Effect of micronized pea seeds (Pisum sativum L.) as a substitute of soybean meal on tissue fatty acid composition and quality of broiler chicken meat. Anim. Sci. J., 87: 1396–1406.

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M. Kowalczyk-Pecka D. (2016 b). Effect of supplementation of mixtures for broiler chickens with Boswellia serrata on the condition of the gastrointestinal tract and rearing efficiency. Ann. Anim. Sci., 16: 835–849.

Kiczorowska B., Samolińska W., Al-Yasiry A.R.M, Kiczorowski P., Winiarska-Mieczan A. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Ann. Anim. Sci., 17: 1–21.

Kim Y.S., Kim J.S., Cho H.S., Rha D.S., Kim J.M., Park J.D., Choi B.S., Lim R., Chang H.K., Chung Y.H., Kwon I.H., Jeong J., Han B.S., Yu I.J. (2008). Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicol., 20: 575–583.

Kumar S. (2010). Nanotechnology and animal health. Vet. World, 3: 567–569.

Lara H.H., Ayala-Nunez N.V., Turrent L.C.I., Padilla C.R. (2009). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microb. Biot., 26: 615–621.

Li M.Z., Huang J.T., Tsai Y.H., Mao S.Y., Fu C.M., Lien T.F. (2016). Nanosize of zinc oxide and the effects on zinc digestibility, growth performances, immune response and serum parameters of weanling piglets. Anim. Sci. J., 87: 1379–1385.

Li W.R., Xie X.B., Shi Q.S., Duan S.S., Ouyang Y.S., Chen Y.B. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 24: 135–141.

Lin W., Xu Y., Huang C., Ma Y., Shannon K.B., Chen D., Huang Y.W. (2009). Toxicity of nano-and microsized ZnO particles in human lung epithelial cells. J. Nanopart. Res., 11: 25–39.

Lipińska I. (2015). Innovation risks in production of food – legal and economic aspects (in Polish). Stowarzyszenie Ekonomistów Rolnictwa i Agrobiznesu. Rocz. Nauk., 17: 129–134.

Liu Y., He L., Mustapha A., Li H., Hu Z.Q., Lin M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. App. Microbiol., 107: 1193–1201.

Lok C.N., Ho C.M., Chen R., He Q.Y., Yu W.Y., Sun H., Kwong-Hang Tam P., Chiu J.F., Che C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12: 527–534.

Martinez-Castanon G.A., Nino-Martinez N., Martinez-Gutierrez F., Martinez-Mendoza J.R., Ruiz F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanoparticle Res., 10: 1343–1348.

Milani N.C., Sbardella M., Ikeda N.Y., Arno A., Mascarenhas B.C., Miyada V.S. (2017). Dietary zinc oxide nanoparticles as growth promoter for weanling pigs. Anim. Feed Sci. Tech., 227: 13–23.

Mohammadi V., Ghazanfari S., Mohammadi-Sangcheshmeh A., Nazaran M.H. (2015). Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Brit. Poultry Sci., 56: 486–493.

Najafzadeh H., Ghoreishi S.M., Mohammadian B., Rahimi E., Afzalzadeh M.R., Kazemivarnamkhasti M., Ganjealidaran H. (2013). Serum biochemical and histopathological changes in liver and kidney in lambs after zinc oxide nanoparticles administration. Vet. World, 6: 534–537.

Nirmala R., Sheikh F.A., Kanjwal M.A., Lee J.H., Park S.-J., Navamathavan R., Kim H.Y. (2010). Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J. Nanoparticle Res., 13: 1917–1927.

Nistico R., Rosellini A., Rivolo P., Faga M.G., Lamberti R., Martorana S., Castellino M., Virga A., Mandracci P., Malandrino M., Magnacca G. (2015). Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles. Appl. Surf. Sci., 328: 287–295.

Ognik K., Sembratowicz I., Cholewińska E., Wlazło Ł., Nowakowicz-Dębek B., Szlązak R., Tutaj K. (2016). The effect of chemically-synthesized silver nanoparticles on performance and the histology and microbiological profile of the jejunum in chickens. Ann. Anim. Sci., 16: 439–450.

Padmavathy N., Vijayaraghavan R. (2008). Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater., 9: 1–7.

Park E.-J., Bae E., Yi J., Kim Y., Choi K., Lee S.H., Yoon J., Lee B.C., Park K. (2010). Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Sci. Technol., 30: 162–168.

Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sa-wosz F., Chwalibog A. (2012). Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens. Open Access Anim. Physiol., 4: 1–8.

Rai M., Yadav A., Gade A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27: 76–83.

Rajendran D., Kumar G., Ramakrishnan S., Thomas K.S. (2013). Enhancing the milk production and immunity in Holstein Friesian crossbred cow by supplementing novel nano zinc oxide. Res. J. Biotechnol., 8: 11–17.

Rajendran R., Balakumar C., Hasabo A.M.A., Jayakumar S., Vaideki K., Ra-jesh E.M. (2010). Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol., 2: 202–208.

Sabella S., Carney R.P., Brunetti V., Malvindi M.A., Al-Juffali N., Vecchio G., Janes S.M., Bakr O.M., Cingolani R., Stellacci F., Pompa P.P. (2014). A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale, 6: 7052–7061.

Sawosz E., Binek M., Grodzik M., Zielińska M., Sysa P., Szmidt M., Niemiec T., Chwalibog A. (2007). Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch. Tierernahr., 6: 444–451.

Sawosz E., Grodzik M., Zielinska M., Niemiec T., Olszanska B., Chwalibog A. (2009). Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Eur. Poult. Sci., 73: 208–213.

Sawosz E., Grodzik M., Lisowski P., Zwierzchowski L., Niemiec T., Zieliń-ska M., Szmidt M., Chwalibog A. (2010). Influence of hydrocolloids of Ag, Au, and Ag/Cu alloy nanoparticles on the inflammatory state at transcriptional level. Bull. Vet. Inst. Pulawy, 54: 81–85.

Seil J.T., Webster T.J. (2012). Antibacterial effect of zinc oxide nanoparticles combined with ultra-sound. Nanotech., 23: 495101.

Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotech, 18: 225103.

Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett., 7: 219–242.

Skalska J., Frontczak-Baniewicz M., Strużyńska L. (2015). Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicology, 46: 145–154.

Smekalova M., Aragon V., Panacek A., Prucek R., Zboril R., Kvitek L. (2016). Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Vet. J., 209: 174–179.

Smith J., Sones K., Grace D., Mac Millan S., Tarawali S., Herrero M. (2013). Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front., 3: 6–13.

Soltani M., Ghodratnema M., Ahari A., Ebrahimzadeh Mousavi H.A., Atee M., Dastmalchi F., Rahmanya J., (2009). The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. Int. J. Vet. Res., 3: 137–142.

Speed D., Westerhoff P., Sierra-Alvarez R., Draper R., Pantano P., Aravamudhan S., Chen K.L., Hristovski K., Herckes P., Bi X., Yang Y., Zeng C., Otero-Gonzalez L., Mikoryak C., Wilson B.A., Kosaraju K., Tarannum M., Craw-ford S., Yi P., Liu X., Babu S.V., Moinpour M., Ranville J., Montano M., Corredor C., Posner J. (2015). Physical, chemical, and in vitro toxicological characterization of nanoparticles in chemical mechanical planarization suspensions used in the semiconductor industry: towards environmental health and safety assessments. Environ. Sci. Nano., 2: 227–244.

Świderska-Środa A., Łojkowski W., Lewandowska M., Kurzydłowski K. (2016). The nanoparticles world (in Polish). Wyd. Nauk. PWN, Warszawa.

Taglietti A., Diaz Fernandez Y.A., Amato E., Cucca L., Dacarro G., Grisoli P., Necchi V., Pallavicini P., Pasotti L., Patrini M. (2012). Antibacterial activity of glutathione-coated silver nanoparticles against Gram positive and Gram negative bacteria. Langmuir, 28: 8140–8148.

Uniyal S., Garg A.K., Jadhav S.E., Chaturvedi V.K., Mohanta R.K. (2017). Comparative efficacy of zinc supplementation from different sources on nutrient digestibility, hemato-biochemistry and anti-oxidant activity in guinea pigs. Livest. Sci., 204: 59–64.

Varner K.E., El-Badawy A., Feldhake D., Venkatapathy R. (2010). State-Of-The-Science Review: Everything Nano Silver and More. Washington, DC, US Environmental Protection Agency.

Wadhera A., Fung M. (2005). Systemic argyria associated with ingestion of colloidal silver. Dermatology Online Journal 11, 12, http://dermatology.cdlib.org/111

Wang B., Feng W., Wang M., Wang T., Gu Y., Zhu M., Ouyang H., Shi J., Zhang F., Zhao Y., Chai Z., Wang H., Wang J. (2008). Acute toxicological impact of nano- and submiro-scaled zinc oxide powder on healthy adult mice. J. Nanopart. Res., 10: 263–276.

Wawrzynowicz J., Wajszczuk K., Baum R. (2012). The specificity of risk factors in agricultural enterprises – an attempt at a holistic approach (in Polish). Zarządzanie i Finanse, 10: 349–360.

Wijnhoven S.W.P., Peijnenburg W.J.G.M., Peijnenburg W.J., Herberts C.A., Ha-gens W.I., Oomen A.G., Heugens E.H., Roszek B., Bisschops J., Gosens I., Van De Meent D., Dekkers S., De Jong W.H., van Zijverden M., Sips A.J.A.M., Geertsma R. (2009). Nanosilver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109–138.

Wilding L.A., Bassis C.M., Walacavage K., Hashway S., Leroueil P.R., Morishita M., Maynard A.D., Philbert M.A., Bergin I.L. (2016). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 10: 513–520.

Williams K., Milner J., Boudreau M.D., Gokulan K., Cerniglia C.E., Khare S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9: 279–289.

Wong S.W., Leung P.T., Djurisic A.B., Leung K.M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal. Bioanal. Chem., 396: 609–618.

Wu J., Zheng Y., Wen X., Lin Q., Chen X., Wu Z. (2014). Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: Investigation in vitro and in vivo. Biomed. Mater., 9: 035–045.

Wzorek Z., Konopka M. (2007). Nanosilver – a new bactericidal agent (in Polish). Czas. Techn. Chemia, 104: 175–181.

Xia T., Kovochich M., Liong M., Madler L., Gilbert B., Shi H., Yeh J.I., Zink J.I., Nel A.E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2: 2121–2134.

Xiong D., Fang T., Yu L., Sima X., Zhu W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci. Total Environ., 409: 1444–1452.

Yang W., Shen C., Ji Q., An H., Wang J., Liu Q., Zhang Z. (2009). Food storage material silver nanoparticles interfere with DNA replication fidelity and bind with DNA. Nanotechnology, 2: 2121–2134.

Yousef J.M., Danial E.N. (2012). In vitro antibacterial activity and minimum inhibitory concentration of zinc oxide and nano-particle zinc oxide against pathogenic strains. J. Health Sci., 2: 38–42.

Zhang L., Jiang Y., Ding Y., Povey M., York D., (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res., 9: 479–489.

Zhao Y.C., Shu T.X., Xiao Y.X., Qiu S.X., Pan Q.J., Tang X.Z. (2014). Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broiler. Biol. Trace Elem. Res., 160: 361–367.

Zhisheng C.J. (2011). Effect of nano-zinc oxide supplementation on rumen fermentation in vitro. Chinese J. Anim. Nutr., 8: 23–29.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 23
PDF Downloads 131 131 15