Comparative response of IgA and IgG activity and hematological parameters among four main beef-cattle breeds infected with gastrointestinal nematodes in the warm humid tropic of Mexico

Roberto González-Garduño 1 , María E. López Arellano 2 , Pedro Mendoza de Gives 2 , Javier Arece García 3 , Carine Marie-Magdeleine 4 , Glafiro Torres Hernández 5 , Jorge Oliva Hernández 6  and J. Alfonso Hinojosa-Cuéllar 7
  • 1 Unidad Regional Universitaria Sursureste, Universidad Autónoma Chapingo, km 7.5 Carretera Teapa-Vicente Guerrero, Teapa, , Tabasco, México
  • 2 Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, INIFAP, Km 11.5, Carr. Fed. Cuernavaca-Cuautla, Col. Progreso, 62550, Jiutepec, , Morelos, México
  • 3 Estación Experimental de Pastos y Forrajes “Indio Hatuey”, Universidad de Matanzas, Central España Republicana, , Matanzas, Cuba
  • 4 UR143-Unité de Recherches Zootechniques, INRA Antilles Guyane, Domaine de Duclos, Prise d'Eau F-97170 , Petit-Bourg, Guadeloupe
  • 5 Instituto de Recursos Genéticos y Productividad, Ganadería, Colegio de Posgraduados Campus Montecillos, Montecillos, , Estado de México, México
  • 6 Campo Experimental Huimanguillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Huimanguillo, , Tabasco, México
  • 7 Universidad Popular de la Chontalpa, Cárdenas, , Tabasco, México

Abstract

This study determined the immunoglobulin (A and G) activity against gastrointestinal nematodes (GIN) and also the hematological parameters in four beef-calf breeds naturally infected in a tropical region of Mexico. Thirty-six infected calves were used to determine the fecal nematode egg counts (FEC), the IgA and IgG activity in serum and saliva, the packed cell volume (PCV), the plasmatic protein (PP) and the differential leukocyte counts. These parameters were measured for a five-month period. ELISA assay was performed using adult worm crude antigen (AWCA) from Haemonchus contortus, Trichostrongylus colubriformis, Mecistocirrus digitatus and Cooperia punctata. The variables were analyzed using a fixed model according to the breed group. The FEC records (means ± standard deviation) for the different breeds were: Brangus (122±115), Charolais (391±507), Guzerat (294±326) and Brown Swiss (413±395). No statistical differences (P>0.05) were found among breeds. Cooperia and Haemonchus were the main identified genera in the coprocultures. Differences in hematological parameters were observed among breeds (P<0.01); Guzerat showed the highest PCV (42.6±4.7%). The lowest leukocyte counts were observed in the Charolais breed (9.2±2.4 × 109 cells L-1). Differences between Guzerat and Charolais were only detected in eosinophils, neutrophils and lymphocytes. Increased activity of IgA was observed against M. digitatus (21% OD) compared with the response against C. punctata in serum samples (13% OD). The lowest IgA activity in serum and saliva was found in Guzerat calves. Charolais and Brown Swiss showed the highest IgA activity in serum and the highest value in saliva was found in Brangus.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alves- Júnior J.R.F., Marciano A.P.V., Bittar E.R., Paneto J.D.C., Martins- Filho O.A., Bittar J.F.F. (2009). Erythrocyte profile of Gir, Nellore and Guzera cattle (Bos taurus indicus, Linnaeus, 1758) in Uberaba-MG. PUBVET, 3 (22).

  • Barrios M., Sandoval E., Camacaro O., Sánchez D., Domínguez L., Márquez O. (2011). Leucogramayperfil proteico en becerros mestizos doble propósito, resistentesysusceptibles a la infestación natural por nematodos gastrointestinales. Zoot. Trop., 29: 313-322.

  • Bartley D.J., Mc Arthur C.L., Devin L.M., Sutra J.F., Morrison A.A., Lespine A., Matthews J.B. (2012). Characterisation of macrocyclic lactone resistance in two field-derived isolates of Cooperia oncophora. Vet. Parasitol., 190: 454-460.

  • Bishop S.C. (2012). Possibilities to breed for resistance to nematode parasite infections in small ruminants in tropical production systems. Animal., 6: 741-747.

  • Bowdridge S., Mac Kinnon K., Mc Cann J.C., Zajac A.M., Notter D.R. (2013). Hairtype sheep generate an accelerated and longer-lived humoral immune response to Haemonchus contortus infection. Vet. Parasitol., 196: 172-178.

  • Bradford M. (1976). Arapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal. Biochem., 72: 248-254.

  • Bricarello P.A., Zaros K.G., Coutinho L.L., Rocha R.A., Kooyman E., De Vries E., Gonçalves J.R.S., Lima L.G., Pires A.V., Amarante A.F.T. (2007). Field study on nematode resistance in Nelore breed cattle. Vet. Parasitol., 148: 272-278.

  • Brun - Hansen H.C., Kampen A.H., Lund A. (2006). Hematologic values in calves during the first 6 months of life. Vet. Clin. Pathol., 35: 182-187.

  • Canul-Ku H.L., Rodríguez - Vivas R.I., Torres - Acosta J.F.J., Aguilar- Caballero A.J., Pérez- Cogollo L.C., Ojeda- Chi M.M. (2012). Prevalence of cattle herds with ivermectin resistant nematodes in the hot sub-humid tropics of Mexico. Vet. Parasitol., 183: 292-298.

  • Cardoso C.P., Silva B.F., Trinca L.A., Amarante A.F. (2013). Resistance against gastrointestinal nematodes in Crioulo Lageano and crossbred Angus cattle in southern Brazil. Vet. Parasitol., 192: 183-191.

  • Coles G.C., Bauer C., Borgsteede F.H.M., Geerts S., Klei T.R., Taylor M.A., Waller P.J. (1992). World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol., 44: 35-44.

  • CONAGUA (2014). Servicio Meteorológico Nacional. México. Normales climatológicas. Available in: http://smn.cna.gob.mx/climatologia/normales/estacion/tab/NORMAL27068.TXT (Consulted 19 October 2015).

  • Cuquerella M., Gómez- Muñoz M.T., Carrera L., De La Fuente C., Alunda J.M. (1994). Cross antigenicity among ovine trichostrongyloidea. Vet. Parasitol., 53: 243-251.

  • Figueroa - Castillo J.A., Méndez - Medina R.D., Berruecos- Villalobos J.M., Gayosso- Vázquez A., Ulloa-Arvízu R., Acosta - Rodríguez R., Pérez-Ramírez H., Alonso - Morales R.A. (2011). Association between major histocompatibility complex microsatellites, fecal egg count, blood packed cell volume and blood eosinophilia in Pelibuey sheep infected with Haemonchus contortus. Vet. Parasitol., 177: 339-344.

  • Gasbarre L.C. (2014). Anthelmintic resistance in cattle nematodes in the US. Vet. Parasitol., 204: 3-11.

  • González- Garduño R., Navarro- Martínez F., Arias- Julián J., Gutiérrez - Cruz S., Vera M., Vera C. (2013). Descripción morfológica de Haemonchus contortusy Mecistocirrus digitatus de ovinosybovinos en Tabasco, México. Av. Cienc. Vet., 28: 76-85.

  • Hou Y., Liu G.E., Bickhart D.M., Matukumalli L.K., Li C., Song J., Gasbarre L.C, Van Tasel C.P, Sonstegard T.S. (2012). Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct. Integr. Genomics, 12: 81-92.

  • Idika I.K., Okonkwo E.A., Onah D.N., Ezeh O., Iheagwam C.N., Nwosu C.O. (2012). Efficacy of levamisole and ivermectin in the control of bovine parasitic gastroenteritis in the subhumid savanna zone of southeastern Nigeria. Parasitol. Res., 111: 1683-1687.

  • Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. (2006). World Map of the Köppen- Geiger climate classification updated. Meteorol. Z., 15: 259-263.

  • Lejeune A., Monahan F.J., Moloney A.P., Earley B., Black A.D., Campion D.P., Englishby T., Reilly P., O ' Doherty J., Sweeney T. (2010). Peripheral and gastrointestinal immune systems of healthy cattle raised outdoors at pasture or indoors onaconcentrate-based ration. BMC Vet. Res., 6: 19. doi:

    • Crossref
    • Export Citation
  • Lima W.S. (1998). Seasonal infection pattern of gastrointestinal nematodes of beef cattle in Minas Gerais State-Brazil. Vet. Parasitol., 74: 203-214.

  • Macêdo A.A., Marciano A.P.V., Rocha L.M., Alves-Júnior J.R.F., Faria A.M.C., Bittar J.F.F., Araújo M.S.S., Santos R.L., Martins-Filho O.A. (2013). Comparative phenotypic profile of subpopulations of peripheral blood leukocytes in European (Bos taurus taurus) and Zebu cattle (Bos taurus indicus). Genet. Mol. Res., 12: 6838-6849.

  • Martínez- Velázquez G., Bustamante Guerrero J.D.J., Palacios Fránquez J.A., Montaño Bermúdez M. (2006). Efectos racialesyheterosis materna Criollo-Guzerat para crecimiento posdesteteycaracteristicas de la canal. Técnica pecuaria en México, 44: 107-118.

  • Morris C.A. (2007). Areview of genetic resistance to disease in Bos taurus cattle. The Vet. J., 174: 481-491.

  • Oliveira M.C.S., Alencar M.M., Chagas A.C., Giglioti R., Oliveira H.N. (2009). Gastrointestinal nematode infection in beef cattle of different genetic groups in Brazil. Vet. Parasitol., 166: 249-254.

  • Oliveira M.C.S., Alencar M.M., Giglioti R., Beraldo M.C.D., Aníbal F.F., Correia R.O., Boschini L., Chagas A.C.S., Bilhassi T.B., Oliveira H.N. (2013). Resistance of beef cattle of two genetic groups to ectoparasites and gastrointestinal nematodes in the state of São Paulo, Brazil. Vet. Parasitol., 197: 168-175.

  • Peña M.T., Miller J.E., Wyatt W., Kearney M.T. (2000). Differences in susceptibility to gastrointestinal nematode infection between Angus and Brangus cattle in south Louisiana. Vet. Parasitol., 89: 51-61.

  • Pisseri F.,de Benedictis C., Robertidi Sarsina P., Azzarello B. (2013). Sustainable animal production, systemic prevention strategies in parasitic diseases of ruminants. Altern. Integ. Med., 2: 2-7.

  • Prada- Jiménezde C.J., Matthews L., Mair C., Stefan T., Stear M.J. (2014). The transfer of Ig Afrom mucus to plasma and the implications for diagnosis and control of nematode infections. Parasitol., 141: 875-879.

  • Quijada J., García F., Vivas I., Simoes D., Rondón Z. (2006). Prevalencia de infecciones por estróngilos digestivos en un rebaño ovino del estado Aragua en la época de lluvia. Rev. Científica, 16: 341-346.

  • Ramírez- Restrepo C.A., Pernthaner A., Barry T.N., López- Villalobos N., Shaw R.J., Pomroy W.E., Hein W.R. (2010). Characterization of immune responses against gastrointestinal nematodes in weaned lambs grazing willow fodder blocks. Anim. Feed Sci. Technol., 155: 99-110.

  • Rinaldi M., Geldhof P. (2012). Immunologically based control strategies for ostertagiosis in cattle: where do we stand? Parasite Immunol., 34: 254-264.

  • Rosse I.C., Assis J.G., Oliveira F.S., Leite L.R., Araujo F., Zerlotini A., Volpini A., Dominitini A.J., Lopes B.C., Arbex W.A., Machado M.A., Peixoto M.G.C.D., Verneque R.S., Martins M.F., Coimbra R.S., Silva M.V.G.B., Oliveira G., Carvalho M.R.S. (2017). Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm. Genome, 28: 66-80.

  • SAS Institute Inc. SAS/STAT® User’s Guide, Version 9.2, Cary, NC: SAS Institute Inc. 2008.

  • Sattar A., Mirza R.H. (2009). Haematological parameters in exotic cows during gestation and lactation under subtropical conditions. Pakistan Vet. J., 29: 129-132.

  • Shaw R.J., Morris C.A., Wheeler M., Tate M., Sutherland I.A. (2012). Salivary Ig A: a suitable measure of immunity to gastrointestinal nematodes in sheep. Vet. Parasitol., 186: 109-117.

  • Sinski E., Bairden K., Duncan J.L., Eisler M.C., Holmes P.H., Mckellar Q.A., Murray M., Stear M.J. (1995). Local and plasma antibody responses to the parasitic larval stages of the abomasal nematode Ostertagia circumcincta. Vet. Parasitol., 59: 107-118.

  • Stear M.J., Bishop S.C., Henderson N.G., Scott I. (2003). Akey mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Animal Health Res. Rev., 4: 45-52.

  • Stromberg B.E., Gasbarre L.C., Waite A., Bechtol D.T., Brown M.S., Robinson N.A., Olson E.J., Newcomb H. (2012). Cooperia punctata: Effect on cattle productivity? Vet. Parasitol., 183: 284-291.

  • Sutherland I.A., Leathwick D.M. (2011). Anthelmintic resistance in nematode parasites of cattle:aglobal issue? Trends in Parasitol., 27: 176-181.

  • Thienpont D., Rochette F., Vanparijs O.F.J. (1986). Diagnóstico de las helmintiasis por medio del examen coprológico. Janssen Research Foundation, 258 pp.

  • Umpapol H., Jitrajak T., Songvicha C., Tantisirin P., Hanmontree R., Sripandon J., Umpapol S. (2014). Response on general physiology, animal welfare behavior and productivity of the different lineage level of Charolais crossbred cattle for fattening beef cattle production performance in Thailand. Pakistan J. Nut., 13: 648-652.

  • Van Wyk J.A., Mayhew E. (2013). Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: Apractical lab guide. The Onderstepoort J. Vet. Res., 80: E1-E14.

  • Van Wyk I.C., Goddard A., Bronsvoort B.D.C., Coetzer J.A., Booth C., Hanotte O., Jennings A., Kiara H., Mashego P., Muller C., Pretorius G., Poole E.J., Thumbi S.M., Toye P.G., Woolhouse M.E.J., Penzhorn B.L. (2013). Hematological profile of East African short-horn zebu calves from birth to 51 weeks of age. Comparative Clinical Pathol., 22: 1029-1036.

  • von Son-de Fernex E., Alonso - Díaz M.Á., Mendoza-de - Gives P., Valles -de la Mora B., Liébano - Hernández E., López- Arellano M.E., Aguilar- Marcelino L. (2014). Reappearance of Mecistocirrus digitatus in cattle from the Mexican tropics: prevalence, molecular, and scanning electron microscopy identification. J. Parasitol., 100: 296-301.

  • William A.R., Palmer D.G., Williams I.H., Vercoe P.E., Karlsson L.J.E. (2010). Faecal dry matter, inflammatory cells and antibodies in parasite-resistant sheep challenged with either Trichostrongylus colubriformis or Teladorsagia circumcincta. Vet. Parasitol., 170: 230-237.

OPEN ACCESS

Journal + Issues

Search