
Ann. Anim. Sci., Vol. 17, No. 3 (2017) 683–701         DOI: 10.1515/aoas-2016-0086

Genomic prediction by considerinG  
Genotype × environment interaction usinG different 

Genomic architectures

Mehdi Bohlouli1♦, Sadegh Alijani1, Ardashir Nejati Javaremi2, Sven König3, Tong Yin3

1Department of Animal Science, University of Tabriz, Tabriz, East Azerbaijan, Iran
2Department of Animal Science, University College of Agriculture and Natural Resources,  

University of Tehran, Karaj, Iran
3Institute of Animal Breeding and Genetics, University of Giessen, Giessen, Germany 

♦Corresponding author: m.bohlouli@tabrizu.ac.ir 

abstract
in this study, accuracies of genomic prediction across various scenarios were compared using sin-
gle-trait and multiple-trait animal models to detect genotype × environment (G × e) interaction 
based on remL method. the simulated high and low linkage disequilibrium (hLd and LLd) 
genome consisted of 15,000 and 50,000 snp chip applications with 300 and 600 QtLs controlling 
the trait of interest. the simulation was done to create the genetic correlations between the traits 
in 4 environments and heritabilities of the traits were 0.20, 0.25, 0.30 and 0.35 in environments 1, 
2, 3 and 4, respectively. two strategies were used to predict the accuracy of genomic selection for 
cows without phenotypes. In the first strategy, phenotypes for cows in three environments were 
kept as a training set and breeding values for all animals were estimated using three-trait model. in 
the second one, only 25, 50 or 75% of records in the fourth environment and all the records in the 
other three environments were used to predict Gbv for non-phenotyped cows in the environment 
4. For the first strategy, the highest accuracy of 0.695 was realized in scenario HLD with 600 QTL 
and 50K SNP chip for the fourth environment and the lowest accuracy of 0.495 was obtained in 
scenario LLD with 600QTL and 15K SNP chips for the first environment. Generally, the accuracy 
of prediction increased significantly (P<0.05) with increasing the number of markers, heritability 
and the genetic correlation between the traits, but no significant difference was observed between 
scenarios with 300 and 600 QtL. in comparison with models without G × e interaction, accuracies 
of the Gbv for all environments increased when using multi-trait models. the results showed that 
the level of Ld, number of animals in training set and genetic correlation across environments play 
important roles if G × e interaction exists. in conclusion, G × e interaction contributes to under-
standing variations of quantitative trait and increasing accuracy of genomic prediction. therefore, 
the interaction should be taken into account in conducting selection in various environments or 
across different genotypes. 

Key words: genomic selection, genotype by environment interaction, linkage disequilibrium, simu-
lation
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Because of the widely used artificial insemination in dairy cattle breeding pro-
grams, progenies of bulls can be spread in environments with completely different 
climates, e.g. regions and countries. Breeding values of the bulls may not be con-
stant across the environments (Calus et al., 2002; Hammami et al., 2009), which 
indicates the existence of genotype × environment (G × E) interaction. The G × E 
interaction occurs when genotypes react differently in different environments (Fal-
coner and MacKay, 1996), implying that some genes might have different expres-
sions according to the environments. These environment-dependent genes can be 
interesting and detected by including an interaction term between quantitative trait 
loci (QTL) and environment in the animal model (Lillehammer et al., 2008). Fur-
thermore, including such interaction effect might increase the power of QTL detec-
tion (Lund et al., 2014), and consequently, benefit the selection progress in breeding 
process (Lillehammer et al., 2008). Many studies have reported the existence of G × 
E interaction for milk production traits in dairy cattle, while, in most of the studies, 
the environments were measured as discrete scales, e.g., the herd production levels 
(Calus et al., 2002; Kolmodin et al., 2002; Hammami et al., 2009) and different 
regions (Hammami et al., 2009; Bohlouli et al., 2014). However, Brügemann et al. 
(2011) and Bohlouli et al. (2013) also created continuous environmental descriptor, 
i.e. temperature-humidity index. Therefore, both multiple-trait and random regres-
sion models have been used to detect G × E interaction for milk production traits 
(Hammami et al., 2009; Brügemann et al., 2011; Bohlouli et al., 2014), by using 
phenotypic and pedigree information. 

Genomic selection (GS), as introduced by Meuwissen et al. (2001), is a new 
approach for improving selection of quantitative traits in animal breeding. In GS, 
genome-wide marker data is used to trace all the QTL controlling the trait of inter-
est and to predict genetic merit of animals by accounting for identity by state and 
the variation in relationship (Nejati-Javaremi et al., 1997). The acceptable accuracy 
of genomic prediction for young bulls with the shorter generation intervals due to 
early selection improves the genetic gain in dairy cattle (Dekkers, 2007; König et 
al., 2009). Genomic data can also be integrated into the models with G × E interac-
tion, where the gene expression changes in the course of temperature-humidity index 
(Yin et al., 2014) or between different breeds and environments (Lillehammer et al., 
2007; Lund et al., 2014). Yin et al. (2014) reported that applying random regression 
model with genotype data might be applicable to predict the genomic breeding val-
ues (GBV) for traits measured late in a dairy cow’s life. Lillehammer et al. (2007) 
mentioned that the accuracy of genomic selection depends not only on its average 
effect but also on its interaction with the environment.

In GS, simulated data allow the researcher to explore the influences of the ge-
netic architecture of the trait (Pimentel et al., 2013), the number of markers used for 
analysis (Solberg et al., 2008; Yin et al., 2014), and the data also allows for evalu-
ating some sources of variability, such as drift, which cannot be assessed with the 
most of real data (Daetwyler et al., 2010). Recently, many strategies for simulation 
have been applied to compare accuracies of genomic predictions. Within this con-
text, accuracies of genomic predictions strongly depend on the quantity and quality 
of phenotypic data (e.g. Yin et al., 2014), genetic parameter estimates, e.g. heritabil-
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ity and genetic correlation (e.g. Hayes et al., 2009; Calus et al., 2013), the genomic 
architecture of the trait (e.g. Daetwyler et al., 2010) and population pedigree struc-
tures (e.g. Hickey and Gorjanc, 2012). Researchers have reported the accuracies of 
different (single- and multi-trait) genomic models using various scenarios (Calus and 
Veerkamp, 2011; Jiang et al., 2015). It has been shown that a multiple-trait genomic 
model had higher prediction accuracy than a single-trait genomic model (Jia and Jan-
nink, 2012). Using multiple-trait genomic model to investigate G×E interaction, GS 
can accelerate genetic gains in predicted future climates (Hayes et al., 2016). 

With regard to farms that are located in different environments, G × E interactions 
are not considered frequently in the simulation studies. Accordingly, the objectives 
of this study were 1) to simulate phenotypic data with quantifying the G × E interac-
tion to follow the (co)variance matrices across different environments that were used 
by Bohlouli et al. (2014), and 2) to investigate the accuracy of genomic predictions 
for cows in the 4 environments and for non-phenotyped cows in an environment. 
For different data structure, the comparisons of accuracy of genomic prediction were 
carried out using different genomic architectures.  

material and methods

simulation 
Phenotypes and genotypes were simulated based on forward-in-time process us-

ing QMSim software (Sargolzaei and Schenkel, 2009). According to the simulation 
study from Yin et al. (2014), two different types of historical populations were simu-
lated to create high linkage disequilibrium (HLD) or low LD (LLD). To create HLD 
between the markers and a QTL, 2500 generations were simulated with a constant 
size of 2000, followed by 70 generations with a gradual decrease in population size 
to 200 individuals. After 10 generations, the population size increased to 4040 in 
generation 2600 and then constant size of 4040 individuals to generation 2620. For 
scenarios with LLD, 1600 generations were considered with a constant size of 4000 
and then increased to 4040 in generation 1620. Subsequently, constant size of 4040 
individuals was simulated to generation 1640. 

There were 40 sires in the last historical generation which were used as found-
ers to create desirable population structure to mimic artificial insemination (AI) in 
dairy cattle population with many individuals but a low effective population size. In 
the second step, animals from the last historical generation were used as founders to 
simulate 10 recent generations for both HLD and LLD scenarios. The replacement 
rate was 50% for sires and 25% for dams and each mating produced a single progeny 
with 50% probability of being male. The simulated genome consisted of 30 chromo-
somes of 100 cM each. Each chromosome contained 500 or 1,667 bi-allelic markers 
to mimic 15000 (15k) or 50000 (50k) SNP chips. Therefore, two scenarios were 
simulated according to the number of markers on the genome. The number of QTLs 
was set to 10 or 20 per chromosome indicating 300 or 600 QTLs in whole genome. 
The positions of the markers and QTLs were randomized on the chromosomes and 
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for both of them, equal allele frequencies were assumed in the beginning of historical 
population and the mutation rate was assumed 2.5 × 10-5 per locus per generation. Ef-
fects of QTL alleles were drawn from a gamma distribution with a shape parameter 
0.4 and the number of QTL alleles at each locus was randomly assigned. The param-
eters of simulation process are summarized in Table 1. QTL effects are restricted to 
being additive and sampled from normal or gamma distributions.

Table 1. Parameters of the simulation process

Population structure Low LD1 High LD
Historical population 

no. of generations (size) 1640 2620
no. of animals in first generation 4040 2000

bottleneck No Yes2

no. of animals in last generation 4040
Current population 

no. of founder males 40
no. of founder females 4000
no. of generations 10
no. of offspring per mate 1
probability for sex of the offspring 0.5
selection and mating designs Random
replacement ratio for males 50%
replacement ratio for females 25%
culling criteria Age

Genome
no. of chromosomes 30
length of each chromosome (cM) 100
no. of QTL per chromosome 10 or 20
effects of QTL alleles Gamma
no. of bi-allelic markers per chromosome 500 or 1667
marker and QTL mutation rate 2.5 × 10-5

marker and QTL allele frequencies Equal
crossover interference (cM) 25
position of markers and QTL Random

1LD = linkage disequilibrium.
2Population size was 200 from generation 2570 to 2580.

simulation environments 
In the study by Bohlouli et al. (2014), common sires were selected with recorded 

daughters in different climatic conditions (warm, moderate, semi-cold and cold cli-
mates) to create genetic connectedness between environments. In order to follow the 
data structure that was created by Bohlouli et al. (2014), an R code written by Yin et 
al. (2014) was applied to modify the QMSim outputs. Genotypes of 2000 cows in the 
10th recent generation were used in the analysis which they were progenies from 40 
sires, with about half-sib group of 50 daughters per sire and the pedigree file included 
all animals in the 10 recent generations. 
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Following Yin et al. (2014), QTLs (300 or 600 QTLs) were randomly grouped 
into 10 classes. QTLs in classes 1 to 7, 2 to 8, 3 to 9 and 4 to 10 were expressed in 
environment 1, 2, 3 and 4, respectively, to mimic the different gene expressions in 
the 4 environments. Simultaneously, the simulation procedure could also establish 
the genetic correlations between environments by overlapping QTL groups in the 
4 environments. True breeding values (TBV) of the animals in each environment 
equaled to the sum of the QTL effects of every cow in the corresponding environ-
ments. Phenotypes were created by adding a residual to TBV of the cows in the  
4 environments. The heritabilities were 0.20, 0.25, 0.30 and 0.35 for the trait of inter-
est in the 4 environments. 2000 phenotyped cows were assigned to the four environ-
ments, indicating that each environment contained 500 cows. At least 10 daughters 
per sire should be kept in each environment. Genetic correlations were obtained us-
ing correlations of TBVs of cows across environments and phenotypic correlations 
were calculated using average phenotypic records per sire in different environments. 
Heritabilities and average genetic and phenotypic correlations between 4 different 
environments are shown in Table 2. 

Table 2. Heritabilities (diagonal and bold) and genetic (above diagonal) and phenotypic (below diagonal) 
correlations of the simulated data between different environments

Environment 1 2 3 4
1 0.20 0.84 (0.06) 0.67 (0.07) 0.50 (0.13)
2 0.38 (0.16) 0.25 0.82 (0.04) 0.63 (0.08)
3 0.31 (0.12) 0.40 (0.10) 0.30 0.81 (0.05)
4 0.22 (0.17) 0.30 (0.19) 0.48 (0.12) 0.35

Standard deviations are shown in parentheses. 

For milk production traits, Bohlouli et al. (2014) reported that the lowest and 
the highest heritabilities were found in warm and cold regions, respectively, which 
were in line with the heritabilities in environment 1 and 4 of this study. Moreover, 
the lowest genetic correlation of 0.5 between two extreme environments reflects the 
physiological and practical background of this study. Usually, low genetic correla-
tions across environments (<0.80) signify the existence of G × E interaction (Rob-
ertson, 1959). 

Quality control 
Quality Control (QC) was applied using preGSf90 program (Aguilar et al., 2011). 

SNPs with minor allele frequency (MAF) lower than 0.01 were deleted. To test  
the Hardy Weinberg Equilibrium (HWE), the SNP was excluded in cases the dif-
ference between observed and expected genotype frequencies was >0.15 (default 
value). For markers and QTLs, LLD scenarios had normal allele frequency dis-
tributions. But distributions of HLD scenarios were nearly U-shape, and after the  
QC, those became relatively normal distribution. Finally, for LLD and HLD sce-
narios, about 0.5% and 15% of SNPs were removed, respectively; and also the same 
ratios of non-segregating QTLs (fixed loci) were found when creating phenotypic 
records.
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Linkage disequilibrium
The level of LD in the simulated scenarios can be assessed by calculating the 

squared correlation coefficient (r2) between all possible pairs of markers (Hill and 
Robertson, 1968): 

where: 
D = f(AB)-f(A)f(B), and f(AB), f(A), f(a), f(B), f(b) are observed frequencies of 

haplotypes AB and of alleles A, a, B, b, respectively. 

The PLINK software (Purcell et al., 2007) was used to estimate LD between 
marker pairs of 2000 cows in the last generation.  

statistical models 
A multiple-trait animal model was applied to analyze records in the 4 environ-

ments by assuming the phenotypes measured in different environments are corre-
lated traits (Ceron-Munoz et al., 2004; Hammami et al., 2009). The following four-
trait genomic model was fitted to estimate variance components (Hayes et al., 2016): 

where: 
y1 is observation for ith trait (i=1 to 4 for the trait in the 4 environments),
I1 is the identity matrix,
μ1 is the overall mean for ith trait,
Z1 is the design matrix for gi, 
g1 is the vector of genomic breeding values (GBV) of animals (phenotyped cows 

and their relatives) in ith environment,
ei is the vector of random residual effects. 

For the first trait with 500 phenotypic records, the dimensions of I1 and  Z1 were 
500×500 and 500×number of animals in pedigree, respectively. It is assumed that 
gi ~ N(0,h   t), ei ~ N(0,h    r) and 
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G matrix was calculated based on the approach of VanRaden (2008): 

where: 
Z = (M – 2pk)  and M contained number of the second allele (0, 1, and 2) matrix 

with dimensions of the number of individual by the number of SNPs (m),
pk was frequency of the second allele in current population. 
Matrix G* was scaled so that the means of diagonals and off-diagonals are the 

same as in A22 (sub-matrix of A for genotyped animals) matrix and then combined 
with A22 to G = 0.95 × G* + 0.05 × A22 in order to make invertible matrices. 

Results of the multiple-trait animal model were compared to results obtained 
from a single-trait animal model, which consider the traits in different environments 
were still the same traits and only one more fixed effect indicated environment was 
added in the model. All the analyses were done using AIREMLF90 program (Misz-
tal et al., 2002) via Average Information (AI) algorithm in the Restricted Maximum 
Likelihood (REML) method. 

accuracy of genomic prediction
Correlations between TBV and GBV estimated from the single-trait and the 

multiple-trait animal models for the 2000 cows were considered as the evaluation 
criteria. Two strategies were used to predict the accuracy of genomic selection for 
genotyped cows without phenotypes (validation set). In the first strategy, pheno-
types for animals in three environments were kept as a training set and GBVs for 
all animals, including non-phenotyped but genotyped cows located in the removed 
environment, were estimated using three-trait genomic model. In the other words, for 
each animal in the validation set, three GBVs were estimated in the three environ-
ments. Then accuracies of genomic predictions were obtained using TBVs of 500 
cows in the validation set and GBVs of those cows in the other three environments. 
In the second one, only 25, 50 or 75% of records in the fourth environment and all 
the records in the other three environments were used in the training set and GBVs 
were estimated for non-phenotyped cows at the fourth environment. The accuracies 
of genomic predictions were correlations between TBV and GBV for animals. The 
evaluation was done using 10 replicates for each scenario, and the means of different 
scenarios were compared using ANOVA procedure by the Duncan test at P<0.05 in 
SAS software (Statistical Analysis System, 2003). 
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results

Linkage disequilibrium
The level of linkage disequilibrium was calculated as the average r2 value for 

all possible pairs of markers for both LLD and HLD scenarios with 15K and 50K 
SNP chips across 10 replicates. Figure 1 plots the average r2 with map distance up 
to 2 Megabase pair (Mbp) on the first chromosome. For all scenarios, the average r2 
decreased with the increasing marker distance. The r2 for HLD scenarios were larger 
than for LLD scenarios when the distance between 2 SNP markers was small. How-
ever, with the increase of the distances between SNPs, especially for distances larger 
than 5.0 Mbp (not shown in the Figure), no difference in r2 was found between HLD 
and LLD scenarios. The average r2 was smaller than 0.05 when distances between 
the two markers were greater than 0.4 Mbp for LLD scenarios and 1.1 Mbp for HLD 
scenarios. The average r2 for all scenarios was 0.01, when distances between two 
markers varied in the range of 5 and 100 Mbp. 

Figure 1. Average linkage disequilibrium (LD) measured by squared correlation coefficient (r2) between 
SNP pairs against their map distance for different scenarios. High or low linkage disequilibrium (HLD 

or LLD) and different SNP density (15KSNP or 50KSNP)

accuracies of genomic prediction 
a: Without considering genotype by environment interaction 
GBVs were predicted for cows with phenotypes and genotypes, which consider 

the traits in different environments were still the same trait and the single-trait mod-
els were used under 8 scenarios (HLD or LLD; 300QTL or 600QTL; 15KSNP or 
50KSNP) listed in Table 3. Accuracies of GBVs were estimated using TBVs of cows 
in related environment using the averaged values from 10 replicates. Generally, ac-
curacies of GBV increased with the increase of heritabilities. Accuracies for scenar-
ios with HLD were higher than those for LLD scenarios. The accuracy of GBV was 
higher when marker density was increased from 15K SNP to 50K SNP. Doubling the 
number of simulated QTL from 300 to 600 had no significant impact (P>0.05) on the 
accuracy. Across all environments, the scenario with LLD, 600 QTLs and the low-
density SNP chip (LLD_600Q_15KSNP) had the lowest accuracy. 
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b: With considering genotype by environment interaction 
cows with phenotypes 
The four-trait animal model was applied when considering cows in 4 environ-

ments as different traits. In comparison with accuracies from single-trait model 
(Table 3), accuracies of GBV estimated from four-trait model (Table 4) were in-
creased in all scenarios and all environments. Generally, the accuracy of prediction 
decreased significantly when LLD instead of HLD. Traits with higher heritabilities 
also had higher accuracies (P<0.05). Therefore, for each scenario, accuracies of 
GBV were the highest for heritability of 0.35 in the fourth environment, because 
the highest heritability was assigned in this environment. In some cases, 50K SNP 
chips scenario was not significantly better than 15K SNP chips scenario, but, basi-
cally, GBVs were more accurate in scenarios with 50K SNP chips (Table 4). The 
highest accuracy of 0.695 was realized in the fourth environment of the scenario 
HLD_600QTL_50KSNP and the lowest accuracy of 0.495 was found in the first 
environment of the scenario LLD_600QTL_15KSNP.

cows without phenotypes 
In the first strategy, the records of all cows from one of the 4 environments were 

removed and consequently, data in the remaining 3 environments was analyzed via 
three-trait animal model. In the second strategy, 25, 50 and 75% of the records from 
the fourth environment were kept out, and prediction was done via four-trait ani-
mal model. In the two strategies, the GBVs were predicted from the information 
of their relatives in the same or the other environments. The average accuracies of 
genomic predictions for non-phenotyped cows in different environments are shown 
in Table 5. The accuracies of GBV estimated from the three-trait model (Table 5) 
were smaller than that estimated via four-trait models (Table 4 and Table 6). Gener-
ally, the accuracy of prediction increased significantly (P<0.05) when comparing 
results from LLD to HLD. Without phenotypic records for the environment (the 
first environment as the validation set), accuracies of predictions were generally low 
when the GBV of non-phenotyped cows were estimated using information of their 
relatives in the fourth environment, and the lowest accuracy (0.230) obtained from 
LLD_300QTL_15KSNP scenario. When animals located in the second environment 
or in the third environment were used as the validation set, the genomic accuracies of 
non-phenotyped cows generally were higher even when environments 1 and 4 were 
used in training set. These results are in line with accuracies of genomic predictions 
for the fourth environment when the third environment was used in training set. Gen-
erally, the accuracy of genomic prediction decreased when extreme environments 
were used as validation set. Among all scenarios, higher accuracies were achieved in 
scenarios with HLD and the 50KSNP chips. 
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Average accuracies of genomic predictions for cows with 25, 50, and 75% of 
cows with phenotypic records in the fourth environment are given in Table 6. For all 
scenarios, accuracies of GBVs increased with increasing percentage of cows with 
phenotypes. The lowest accuracy of 0.315 was obtained for LLD_600QTL_15KSNP 
scenario, when 25% of phenotyped cows were available in the fourth environment, 
and the accuracy of prediction was the highest (0.604) for HLD_300QTL_50KSNP 
scenario, when 75% of cows had phenotypic records. Although, in some cases, the 
scenarios with 300 QTL had higher accuracies than scenarios with 600 QTL, no 
significant difference was observed between scenarios combined with 300 and 600 
QTL.

Table 6. Accuracy and standard deviation (in parenthesis) of genomic predictions for non-phenotyped 
cows in the 4th environment with 25, 50, and 75% of phenotyped cows in the 4th environment via 

four-trait animal model. Scenarios include high or low linkage disequilibrium (HLD or LLD), different 
QTL number (300QTL or 600QTL) and different SNP density (15KSNP or 50KSNP)

Scenario
Phenotyped cows in the fourth environment (%) 

25 50 75
HLD_300QTL_15KSNP 0.453 abC (0.044) 0.519 aB (0.054) 0.588 aA (0.031)
HLD_300QTL_50KSNP 0.463 aC (0.022) 0.568 aB (0.032) 0.604 aA (0.033)
HLD_600QTL_15KSNP 0.442 abcC (0.057) 0.520 abB (0.051) 0.587 aA (0.062)
HLD_600QTL_50KSNP 0.463 abB (0.063) 0.545 abA (0.067) 0.594 aA (0.028)
LLD_300QTL_15KSNP 0.367 edC (0.041) 0.493 bB (0.043) 0.538 abA (0.032)
LLD_300QTL_50KSNP 0.390 cdC (0.028) 0.511 abB (0.029) 0.570 aA (0.029)
LLD_600QTL_15KSNP 0.315 eB (0.121) 0.402 cAB (0.116) 0.451 cA (0.130)
LLD_600QTL_50KSNP 0.398 bcdB (0.037) 0.515 abA (0.042) 0.504 bcA (0.100)

Means without common letters (lowercase and uppercase letters stand for comparison within column and 
row means, respectively) are statistically different (P<0.05). 

discussion
The present study examined accuracies of genomic prediction across various sce-

narios via single-trait (to predict overall performance in the 4 environments) and 
multiple-trait (to predict GBV considering genotype by environment interaction) 
models. The LD levels and the SNP density that were used in different scenarios 
affected accuracies of genomic predictions. The trend of exponential decay of LD 
with the increase in physical distance was in agreement with other published stud-
ies (Jiménez-Montero et al., 2013; Yin et al., 2014). The HLD scenarios assumed  
a relatively small population size of 200 individuals in the historical population for 
10 generations to create a bottleneck, which generates higher LD than the LLD sce-
narios without bottleneck (Figure 1). Because LD depends on the genetic structure 
of the population it can be arisen due to small effective population size (Brito et al., 
2011). As previously reported in dairy cattle (e.g., Hayes et al., 2009; Brito et al., 
2011), the extent of LD has a major impact on the accuracy of genomic prediction. 
Accuracies of prediction for high and low LD levels were consistent with reports 
from other studies (e.g. Pimentel et al., 2013; Yin et al., 2014). Therefore, the great-
er average accuracies were observed for scenarios with HLD than scenarios with  
LLD. 
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Increasing the number of markers without increasing the number of phenotypes 
can be counter-productive as co-linearity issues and it can reduce accuracy (Muir, 
2007). However, Solberg et al. (2008) reported that the accuracies of prediction 
increased when the marker density was doubled. Yin et al. (2014) also stated that 
higher marker density would increase the level of linkage disequilibrium between 
markers and QTLs, consequently, more markers could capture a higher proportion of 
genetic variance of the trait of interest (Goddard, 2009; Muir, 2007). Therefore, aver-
age accuracies of scenarios with 50KSNP chip were higher than average accuracies 
of scenarios with 15KSNP chip.  

Daetwyler et al. (2010) investigated the impact of genomic architecture on the 
accuracy of prediction using different methods and found that the GBLUP indicated 
relatively constant accuracies for traits with different numbers of QTL. But using 
Bayes B methodology, the accuracy was the highest with small number of QTL 
and decreased as number of QTL increased (Habier et al., 2009; Clark et al., 2011). 
Clark et al. (2011) demonstrated that in GBLUP, no significant difference was found 
when comparing different QTL numbers, unless number of QTL was very small. 
For example, accuracies of prediction were 0.37 and 0.38 for scenarios with 100 and 
1000 QTLs, respectively (Clark et al., 2011). In agreement with the previous studies 
(Daetwyler et al., 2010; Clark et al., 2011; Wientjes et al., 2015), based on REML 
methodology, the constant accuracies of genomic prediction were observed for sce-
narios with 300 and 600 QTLs. 

Recent studies (Daetwyler et al., 2008; Goddard, 2009; Hayes et al., 2009) have 
shown that the heritability of the trait of interest, as a factor underlying the genetic 
architecture of a trait, also can influence the accuracy of genomic prediction. Moser 
et al. (2012) reported that there was a strong relationship between the accuracy of 
genomic prediction and the heritability of the trait. For production traits with usually 
moderate heritabilities, the accuracy of prediction was better than that for traits with 
lower heritabilities, e.g. health traits. Calus et al. (2013) mentioned that the accura-
cies were 0.41 and 0.67 for traits with heritabilities of 0.05 and 0.30, respectively. 
In this study, using all phenotyped animals in the training set, among all scenarios, 
accuracies for the third and the fourth environments were higher compared with the 
results for the other environments, because heritabilities were increased from the first 
environment to the fourth environment (Table 4). 

Higher accuracies in Table 4 than Table 3 indicated that multiple-trait models are 
more accurate than single-trait models. Multiple-trait animal models for genomic 
predictions have been reported recently (Calus and Veerkamp, 2011; Hayashi and 
Iwata, 2013; Guo et al., 2014), because more information can be considered simul-
taneously. As with the traditional genetic evaluation process, a multiple-trait model 
can increase the accuracy of genomic prediction using information from genetically 
correlated traits (Jia and Jannink, 2012; Guo et al., 2014; Jiang et al., 2015). In an-
other study, Yin et al. (2014) reported that when using continuous environmental 
descriptor, correlated traits can be considered as longitudinal trait and genomic ran-
dom regression model can be applied to predict the GBV. Hayashi and Iwata (2013) 
reported that, for a low heritable trait (h2 = 0.1), accuracy of GBV estimated from 
multi-trait model was about 20% higher than accuracy from single-trait model. 
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With regard to benefits of multi-trait model over single-trait model (Calus and 
Veerkamp, 2011; Jia and Jannink, 2012; Guo et al., 2014), multiple-trait animal mod-
el can be useful to detect G × E interaction for milk production traits (Lillehammer et 
al., 2007), and use of information from phenotypes in different environments as dif-
ferent correlated traits can be the main advantage of the multiple-trait animal model 
to improve the accuracy of genomic prediction (Hayes et al., 2016). 

The results (Table 5) indicated that accuracy of genomic prediction was low-
est when the environments 1 and 4 were used in the training and validation sets 
respectively, due to the fact that there was less genetic correlation (0.50) between 
the environments 1 and 4 (Table 2). There was a high genetic correlation between 
the second and the third environments and the accuracies for non-phenotyped cows 
were higher, when using animals located in either of them as training set. Especially 
for HLD_600QTL_50KSNP scenario, average accuracies were 0.428 and 0.412 for 
the second and the third environments, respectively, when those environments were 
used in validation set. The highest average accuracy of 0.446 was obtained for non-
phenotyped cows in the environment 3 when environment 4 was used in training 
set. Given genetic correlations between traits in environments 2 with 3 (0.82) and 
in environments 3 with 4 (0.81), a possible reason for the highest average accuracy 
(0.446) using environment 4 could be that the heritability of the environment 4 was 
the highest among the 4 environments.

As reported by de Roos et al. (2009) and Hayes et al. (2009), the accuracy of 
genomic prediction was determined by the number of phenotypic records used to 
estimate the GBV. Four-trait animal model for the trait with 25% of records in the 
fourth environment (Table 6) proved better than the three-trait animal model without 
any record in the fourth environment (Table 5). Because, cows in the validation set 
were genetically related to their half-sibs in the same and also in the other environ-
ments, and these close relationships might improve the accuracy of genomic predic-
tion (Yin et al., 2014; Guo et al., 2014). Therefore, in practical breeding programs, 
accuracy of genomic selection can be improved even though only a small percent-
age of animals in the extreme environment have phenotypic records. The accuracy 
increased with increasing the phenotyped cows in the extreme environment. With 
increasing records, there will be more observations per SNP allele and then, the accu-
racy will be higher (Hayes et al., 2009). Using the 50% instead of 25% of phenotyped 
animals in training set, the increase in accuracy of genomic prediction was relatively 
higher for the LLD scenario than accuracy for HLD scenario (Table 6). For example, 
the increase in accuracies for HLD_300QTL_15KSNP and LLD_300QTL_15KSNP 
scenarios were 0.066 and 0.126, respectively. Therefore, to achieve a desirable  
accuracy in population with low LD, we should have relatively more pheno- 
types in the considered environment. Also Hozé et al. (2014) reported that it re- 
quires a large reference population per breed to increase accuracy of genomic pre- 
diction. 

Genetic correlation between traits has previously been applied to improve accu-
racy of multi-trait (Calus and Veerkamp, 2011; Aguilar et al., 2011) and multi-breed 
(Olson et al., 2012; Karoui et al., 2012) genomic predictions. Olson et al. (2012) 
demonstrated that using a multi-trait model with SNP effects in different breeds 
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treated as correlated effects can increase accuracy of prediction. Karoui et al. (2012) 
found a slight increase in accuracies for a trait with high genetic correlation across 
breeds; however, no increase was found for fertility, because genetic correlations 
between breeds were low for this trait. Wientjes et al. (2015) mentioned that the 
accuracy of multi-breed genomic prediction might be influenced by factors such as 
the family relationships and level of LD. For reference population including animals 
from different environments or countries, the multi-trait genomic model is useful to 
investigate G × E interaction and to increase accuracy of genomic predictions (Hayes 
et al., 2016). For milk production trait of dairy cows, the genetic correlation of the 
same trait measured in Australia with most of the northern hemisphere countries is 
about 0.8 or less (Haile-Mariam et al., 2015). As the G × E interaction between Aus-
tralia and other countries is considerable, Haile-Mariam et al. (2015) demonstrated 
that it will be better to include phenotypic and genotypic records of progenies of sires 
from other countries in the reference population to reduce biases of prediction via 
multi-trait analysis. 

The simulated QTL effect was zero in an environment but it has an effect in the 
others. In the other words, G × E interaction can be caused either by alleles being 
expressed only in specific environment (Lillehammer et al., 2007) and when the 
QTL had an interaction with the environment, the model with the G × E interaction 
effect gave a higher power of QTL detection than model without interaction effect. 
Lillehammer et al. (2009) reported some QTLs that have not been reported earlier. 
They mentioned that gene by environment interaction is one possible cause of incon-
sistency between QTL mapping studies, such that QTL detected in one environment 
may not be detected in another, or if detected, may have different effects. Therefore, 
models that included G × E interaction can detect different gene expression and ge-
netic variations across environments (Bastiaansen et al., 2014). 

In total, our results without considering G × E interaction, like a population, 
agree with previous results from simulation studies, and the accuracy of genomic 
prediction depends on the level of LD, the number of markers and the heritability  
of trait of interest, and also no significant difference was observed between sce-
narios with 300 and 600 QTL. When including G × E interaction in the model, level  
of LD, number of animals in training set and the genetic correlation between  
the traits play the important roles to achieve a desirable accuracy of genomic pre- 
diction. 

conclusion
The multiple-trait genomic model, which simultaneously considers the same trait 

measured in different environments as different correlated traits, can improve the 
accuracy of genomic predictions. Therefore, G × E interaction should be taken into 
account to estimate GBVs more accurately and to select better genotypes. Apply-
ing a few phenotypic records in an environment gave more accuracy of prediction 
compared with an environment without any phenotypic records, and with regard to 
genetic correlations across environments, for LLD scenarios, it is necessary to have 
more phenotypic records to achieve a desirable accuracy. Furthermore, the G × E 
interaction analysis would contribute to understanding variation of quantitative trait, 
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and further studies are required to compare capability of different methods to detect 
gene expression across environments and find out the biological background behind 
the interaction.
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