Fiber substrates in the nutrition of weaned piglets – a review

Marianna Flis 1 , Wiesław Sobotka 1  and Zofia Antoszkiewicz 1
  • 1 Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 , Olsztyn, Poland


The present review summarizes the results of 37 experiments in which different types and levels (from 0.5 to 29.7%) of fibrous supplements were used in the formulation of diets for weaned piglets. Diets were supplemented with different sources of insoluble dietary fiber (iDF), soluble dietary fiber (sDF), or mixed DF sources. Most of the applied DF sources decreased the ileal and fecal organic matter digestibility, and they often lowered crude protein digestibility. A moderate addition (1.5-8%) of iDF sources increased average daily feed intake (ADFI) and, frequently, average daily gains (ADG). Sources of sDF as well as high inclusion levels of fiber-rich feeds tended to decrease ADFI and ADG. Improved fecal consistency, decreased diarrhea incidence and antibiotic interventions were confirmed in piglets fed diets with added lignocellulose, cooked or raw oat hulls and wheat bran. The dietary inclusion of iDF rather than sDF sources improved gastrointestinal tract (GIT) development, enzyme activity and gut morphology. An increase in the counts of beneficial gut microbiota and the concentrations of short-chain fatty acids was stimulated by diets with addition iDF or sDF sources. Such diets also slowed down proteolytic fermentation which negatively affects the colonic mucosa. Some research findings indicate that iDF sources improve intestinal barrier function. The analyzed experimental data suggest that the addition of 1.5-2% of a lignocellulose preparation, 2% of oat hulls, 4-8% of coarse wheat bran to diets for weaned piglets may be recommended to promote GIT development and health, and to improve growth performance.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abad R., Ibáñez M.A., Carabaño R., García J. (2013). Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determination of soluble fibre and intestinal mucin. Anim. Feed Sci. Technol., 182: 61-70.

  • Awati A., Williams B.A., Bosch M.W., Gerrits W.J.J., Verstegen M.W.A. (2006). Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weanling piglets. J. Anim. Sci., 84: 2133-2140.

  • Bach Knudsen K.E. (1997). Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol., 67: 319-338.

  • Bach Knudsen K.E. (2001). The nutritional significance of “dietary fibre“ analysis. Anim. Feed Sci. Technol., 90: 3-20.

  • Bach Knudsen K.E., Hedemann M.S., Lærke H. N. (2012). The role of carbohydrates in intestinal health of pigs. Anim. Feed Sci. Technol., 173: 41-53.

  • Barszcz M., Skomiał J. (2011). The development of the small intestine of piglets - chosen aspects. J. Anim.Feed Sci., 20: 3-15.

  • Bikker P., Dirkzwager A., Fledderus J., Trevisi P.,le Huërou- Luron I., Lallès J.P., Awati A. (2006). The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets. J. Anim. Sci., 84: 3337-3345.

  • Boudry G., Péron V., Le Huërou- Luron I., Lallès J.P. (2004). Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J. Nutr., 134: 2256-2262.

  • Brownlee I.A. (2011). The physiological roles of dietary fibre. Food Hydrocolloid, 25: 238-250.

  • Bruininx E.M.A.M., Vander Peet - Schwering C.M.C., Schrama J.W. Vereijken P.F.G., Vesseur P.C., Everts H.,den Hartog L.A., Beynen A.C. (2001). Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, individual body weight, and body weight distribution within groups. J. Anim. Sci., 79: 301-308.

  • Chen H., Mao X., He J., Yu B., Huang Z., Yu J., Zheng P., Chen D. (2013). Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr., 110: 1837-1848.

  • Cole J.T., Fahey G.C. Jr., Merchen N.R., Patil A.r., Murray S.M., Hussein H.S., Brent J.L. Jr. (1999). Soybean hulls asadietary fiber source for dogs. J. Anim. Sci., 77: 917-924.

  • Collier C.T., Carroll J.A. Callaway T.R., Arthington J.D. (2010). Oral administration of citrus pulp reduces gastrointestinal recovery of orally dosed Escherichia coli F18 in weaned pigs. J. Anim. Vet. Adv., 9: 2140-2145.

  • Corneiro M., Lordelo M., Cunha L.F., Freire J. (2007). Microbial activity in the gut of piglets: II. Effect of fibre source and enzyme supplementation. Livest. Sci., 108: 262-265.

  • Dulantha U., Anderson R.C., Mc Nab W., Moughan P.J., Wells J.M., Roy N.C. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr., 141: 769-776.

  • Freire J.P.B., Guerreiro A.J.G., Cunha L.F., Aumaitre A. (2000). Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol., 87: 71-83.

  • Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J.C., Van Immerseel F. (2006). Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol., 72: 946-949.

  • Gerritsen R., Vander Aar P., Molist F. (2012). Insoluble nonstarch polysaccharides in diets for weaned piglets. J. Anim. Sci., 90 (Suppl. 4): 318-320.

  • González-Oritz G., Pérez J.F., Hermes R.G., Molist F., Jiménez- Diaz R., Martín- Orúe M. (2014). Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus. Br. J. Nutr., 111: 633-642.

  • Hanczakowska E., Świątkiewicz M., Białecka A. (2008). Pure cellulose asafeed supplement for piglets. Med. Weter., 64: 45-48.

  • Hedemann M.S., Eskildsen M., Lærke H.N., Pedersen C., Lindberg J.E., Laurinen P., Bach Knudsen K.E. (2006). Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J. Anim. Sci., 84: 1375-1386.

  • Herfel T., Jacobi S., Lin X., Van Heugten E., Fellner V., Odle J. (2013). Stabilized rice bran improves weaning pig performance viaaprebiotic mechanism. J. Anim. Sci., 91: 907-913.

  • Hermes R.G., Molist F., Ywazaki M., Nofrarías M., Gomezde Segura A., Gasa J., Pérez J.F. (2009). Effect of dietary level of protein and fiber on the productive performance and health status of piglets. J. Anim. Sci., 87: 3569-3577.

  • Hermes R.G., Molist F., Ywazaki M., Nofrarías M., Gomezde Segura A., Gasa J., Torrallardona D., Pérez J.F. (2010). Effects of type of cereal and fibre level on growth and parameters of the gastrointestinal tract in young pigs. Livest. Sci., 133: 225-228.

  • Hopwood D.E., Pethick D.W., Hampson D.J. (2002). Increasing the viscosity of the intestinal contents stimulates proliferation of enterotoxigenic Escherichia coli and Brachyspira pilosicoli in weaner pigs. Br. J. Nutr., 88: 523-532.

  • Högberg A., Lindberg J.E. (2004). Influence of cereal non-starch polysaccharides and enzyme supplementation on digestion and gut environment in weaned piglets. Anim. Feed Sci. Technol., 116: 113-128.

  • Högberg A., Lindberg J.E. (2006). The effect of level and type of cereal non-starch polysaccharides on the performance, nutrient utilization and gut environment of pigs around weaning. Anim. Feed Sci. Technol., 127: 200-219.

  • Hu C.H., Xiao K., Luan Z.S., Song J. (2013). Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci., 91: 1094-1101.

  • Jeaurond E.A., Rademacher M., Pluske J.R., Zhu C.H.,de Lange C.F.M. (2008). Impact of feeding fermentable proteins and carbohydrates on growth performance, gut health and gastrointestinal function of newly weaned pigs. Can. J. Anim. Sci., 88: 271-281.

  • Jha R., Rossnagel B., Pieper R., Van Kessel A., Leterme P. (2010). Barley and oat cultivars with diverse carbohydrate composition alter ileal and total tract nutrient digestibility and fermentation metabolites in weaned piglets. Animal, 4: 724-731.

  • Kahlon T.S., Chow F.I. (2000). In vitro binding of bile acids by rice bran, oat bran, wheat bran and corn bran. Cereal Chem., 77: 518-521.

  • Kim J.C., Mullan B.P., Hampson D.J., Pluske J.R. (2008). Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhea and reduces indices of protein fermentation in the gastrointestinal tract. Br. J. Nutr., 99: 1217-1225.

  • Kim J.C., Hansen C.F., Mullan B.P., Pluske J.R. (2012). Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol., 173: 3-13.

  • Kroismayr A., Neufeld K., Affentranger P. (2008). Einfluss einer neuartigen Lignocellulose auf Leistungsparameter in der Ferkelaufzucht. In: 7 BOKU-Symposium Tierernährung. Dezember 2008. Wien, pp. 118-122.

  • Lallès J-P., Boudry G., Favier C.,le Flock N., Luron I., Montagne L., Oswald I.P., Pié S., Piel C., Sève B. (2004). Gut function and dysfunction in young pigs: physiology. Anim. Res., 53: 301-316.

  • Mateos G.G., Martin F., Latorre M.A., Vicente B., Lázaro R. (2006). Inclusion of oat hulls in diets for young pigs based on cooked maize or cooked rice. Anim. Sci., 82: 57-63.

  • Mc Donald D.E., Pethick D.W., Mullan B.P., Hampson D.J. (2001). Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr., 186: 487-498.

  • Molist F., Gómez de Segura A., Gasa J., Hermes R.G., Manzanilla E.G., Anguita M., Pérez J.F. (2009). Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and the microbial activity in early weaned piglets. Anim. Feed Sci. Technol., 149: 346-353.

  • Molist F., Gómez de Segura A., Pérez J.F., Bhandari S.K., Krause D.O., Nyachoti C.M. (2010 a). Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88. Livest. Sci., 133: 214-217.

  • Molist F., Ywazaki M., Gómez de Segura A., Hermes R.G., Gasa J.G., Hernández F.P. (2010 b). Administration of loperamide and addition of wheat bran to the diets of weaner pigs decrease the incidence of diarrhea and enhance their gut maturation. Br. J. Nutr., 103: 879-885.

  • Molist F., Hermes R.G., Gómez de Segura A., Martín- Orúe S.M., Gasa J., Manzanilla E.G., Pérez J.F. (2011). Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br. J. Nutr., 105: 1592-1600.

  • Molist F., Manzanilla E.G., Pérez J.F. Nyachoti C.M. (2012). Coarse, but not finely ground, dietary fibre increases intestinal Firmicutes:bacteroidetes ratio and reduces diarrhoea induced by experimental infection in piglets. Br. J. Nutr., 108: 9-15.

  • Molist F.,van Oostrum M., Pérez J.F., Mateos G.G., Nyachoti C.M., van der Aar P.J. (2014). Relevance of functional properties of dietary fibre in diets for weanling pigs. Anim. Feed Sci. Technol., 189: 1-10.

  • Montagne L., Pluske J.R., Hampson D.J. (2003). Areview of interaction between dietary fibre and the intestinal mucosa, and their consequence on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol., 108: 95-117.

  • Montagne L., Boudry G., Favier C., Le Huërou- Luron I., Lallès J-P. (2007). Main intestinal markers associated with the changes in gut architecture and function in piglets after weaning. Br. J. Nutr., 97: 45-57.

  • Montagne L., Le Floc ’h N., Arturo - Schaan M., Foret R., Urdaci M.C., Le Gall M. (2012). Comparative effects of level of dietary fiber and sanitary conditions on the growth and health of weanling pigs. J. Anim. Sci., 90: 2556-2569.

  • Pascoal L.A.F., Thomaz M.C., Watanabe P.H.,dos Santos U., Ezequiel J.M.B., Amorim A.B., Daniel E., Masson G.C.I. (2012). Fiber sources in diets for newly weaned piglets. R. Bras. Zootec., 41: 636-642.

  • Pié S., Awati A., Vida S., Falluel I., Williams B.A., Oswald I.P. (2007). Effect of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific m RNAcontent in weaning piglets. J. Anim. Sci., 85: 673-683.

  • Pieper R., Kröger S., Richter J.F., Wang J., Martin L., Bindelle J., Htoo J.K., Von Smolinski D., Vahjen J., Zentek J., Van Kessel A.G. (2012). Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets. J. Nutr., 142: 661-667.

  • Rezaei M., Karimi Torshizi M.A., Shariatmadari F. (2014). Inclusion of processed rice hulls as insoluble fiber in the diet on performance and digestive traits of Japanese quails. J. Anim. Sci. Adv., 4: 962-972.

  • Schedle K., Plitzner C., Ettle T., Zhao L., Domig K.J. Windisch W. (2008). Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch. Anim. Nutr., 62: 141-151.

  • Scheppach W. (1994). Effects of short chain fatty acids on gut morphology and function. Gut (Suppl. 1): S35-S38.

  • Schiavon S., Tagliapietra F., Bailoni L., Bortolozzo A. (2004). Effect of sugar beet pulp on growth and health status of weaned piglets. Ital. J. Anim. Sci., 3: 337-351.

  • Serena A., Bach Knudsen K.E. (2007). Chemical and physicochemical characterisation of coproducts from the vegetable food and agro industries. Anim. Feed Sci. Technol., 139: 109-124.

  • Skrabanja V., Kreft I., Golob T., Modic M., Ikeda S., Ikeda K., Kreft S., Bonafaccia G., Knapp M., Kosmelj K. (2004). Nutrient content in buckwheat milling fractions. Cereal Chem., 81: 172-176.

  • Soufrant W.B. (2001). Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig. Anim. Feed Sci. Technol., 90: 93-102.

  • Sunvold G.D., Hussein H.S., Fahey G.C., Merchen N.R., Reinhart G.A. (1995). In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, human, and pigs and ruminal fluid from cattle. J. Anim. Sci., 73: 3639-3648.

  • Święch E., Tuśnio A., Taciak M., Boryczka M., Buraczewska L. (2012). The effects of pectin and rye on amino acid ileal digestibility, threonine metabolism, nitrogen retention, and morphology of the small intestine in young pigs. J. Anim. Feed Sci., 21: 89-106.

  • Van Nevel C.J., Dierick N.A., Decuypere J.A., De Smet S.M. (2006). In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets. Arch. Anim. Nutr., 60: 477-500.

  • Vente- Spreeuwenberg M.A.M., Verdonk J.M.A.J., Beynen A.C., Verstegen M.W.A. (2003). Interrelationships between gut morphology and faeces consistency in newly weaned piglets. Anim Sci., 77: 85-94.

  • Weber T.E., Ziemer C.J., Kerr B.J. (2008). Effects of adding fibrous feedstuffs to the diet of young pigs on growth performance, intestinal cytokines, and circulating acute-phase proteins. J. Anim. Sci., 86: 871-881.

  • Wellock I.J., Fortomaris P.D., Houdijk J.G.M., Wisemann J., Kyriazakis I. (2008). The consequences of non-starch polysaccharide solubility and inclusion level on the health and performance of weaned pigs challenged with enterotoxigenic Escherichia coli. Br. J. Nutr., 99: 520-530.

  • Williams B., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207-227.


Journal + Issues