Cocaine- and Amphetamine-Regulated Transcript (CART ) Peptide in Mammals Gastrointestinal System – A Review

Open access

Abstract

Since its first description over 30 years ago, cocaine- and amphetamine-regulated transcript (CART) peptide has been the subject of many studies. Most of these investigations pertain to occurrence and functions of CART within the central nervous system, where this peptide first of all takes part in regulation of feeding, stress reactions, as well as neuroprotective and neuroregenerative processes. However, in recent years more and more studies concern the presence of CART in the gastrointestinal system. This peptide has been described both in stomach and intestine, as well as in other digestive organs such as pancreas or gallbladder. Particularly much information relates to distribution of CART in the enteric nervous system, which is located within the wall of digestive tract. Other studies have described this peptide in intestinal endocrinal cells. Moreover, it is known that CART can be present in various types of neuronal cells and may co-localize with different types of other neuronal active substances, which play roles of neuromediators and/or neuromodulators. On the other hand precise functions of CART in the gastrointestinal system still remain unknown. It is assumed that this peptide is involved in the regulation of gastrointestinal motility, intestinal blood flow, secretion of intestinal juice, somatostatin and/or insulin, as well as takes part in pathological processes within the gastrointestinal tract. The large number of recent studies concerning the above mentioned problems makes that knowledge about occurrence and functions of CART in the digestive system rather piecemeal and requires clarifying, which is the aim of the present article.

Ahlman H., Nilsson O. (2001). The gut as the largest endocrine organ in the body. Ann. Oncol., 2: 63-68.

Arciszewski M.B., Ekblad E. (2005). Effects of vasoactive intestinal peptide and galanin on survival of cultured porcine myenteric neurons. Regul. Pept., 125: 185-192.

Arciszewski M.B., Całka J., Majewski M. (2008). Cocaine- and amphetamine-regulated transcript (CART) is expressed in the ovine pancreas. Ann. Anat., 190: 292-299.

Arciszewski M.B., Barabasz S., Skobowiat C., Maksymowicz W., Majewski M. (2009). Immunodetection of cocaine- and amphetamine-regulated transcript in the rumen, reticulum, omasum and abomasum of the sheep. Anat. Histol. Embryol., 38: 62-67.

Balemba O.B., Grøndahl M.L., Mbassa G.K., Semuguruka W.D., Hay- Smith A., Skadhauge E., Dantzer V. (1998). The organisation of the enteric nervous system in the submucous and mucous layers of the small intestine of the pig studied by VIPand neurofilament protein immunohistochemistry. J. Anat., 192: 257-267.

Balkan B., Keser A., Gozen O., Koylu E.O., Dagci T., Kuhar M.J., Pogun S. (2012). Forced swim stress elicits region-specific changes in CARTexpression in the stress axis and stress regulatory brain areas. Brain Res., 1432: 56-65.

Bassotti G., Villanacci V., Nascimbeni R., Cadei M., Fisogni S., Antonelli E., Corazzi N., Salerni B. (2009). Enteric neuroglial apoptosis in inflammatory bowel diseases. J. Crohns Colitis, 3: 264-270.

Bharne A.P., Upadhya M.A., Shelkar G.P., Singru P.S., Subhedar N.K., Kokare D.M. (2013). Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology, 67: 126-134.

Brown D.R., Timmermans J.P. (2004). Lessons from the porcine enteric nervous system. Neurogastroenterol. Motil., 1: 50-54.

Bulc M., Gonkowski S., Landowski P., Kamińska B., Całka J. (2014). Immunohistochemical distribution of cocaine and amphetamine regulatory peptide-like immunoreactive (CARTLI) nerve fibers in the circular muscle layer and their relationship to other peptides in the human caecum. Acta Histochem., 116: 1029-1036.

Bulc M., Gonkowski S., Ca łka J. (2015 a). Expression of cocaine and amphetamine regulated transcript (CART) in the porcine intramural neurons of stomach in the course of experimentally induced diabetes mellitus. J. Mol. Neurosci., 57: 376-385.

Bulc M., Gonkowski S., Landowski P., Kami ńska B., Całka J. (2015 b). Immunohistochemical evidence of the co-localisation of cocaine and amphetamine regulatory peptide with neuronal isoform of nitric oxide synthase, vasoactive intestinal peptide and galanin within the circular muscle layer of the human caecum. Folia Morphol. (Warsz.), 74: 176-182.

Burliński P.J. (2012). Inflammation- and axotomy-induced changes in cocaine- and amphetamineregulated transcript peptide-like immunoreactive (CART-LI) nervous structures in the porcine descending colon. Pol. J. Vet. Sci., 15: 517-524.

Burliński P.J., Rychlik A., Całka J. (2014). Effects of inflammation and axotomy on expression of acetylcholine transferase and nitric oxide synthetase within the cocaine- and amphetamineregulated transcript-immunoreactive neurons of the porcine descending colon. J. Comp. Pathol., 150: 287-296.

Chiocchetti R., Grandis A., Bombardi C., Lucchi M.L., Dal Lago D.T., Bortolami R., Furness J.B. (2006). Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum:amorphometric and neurochemical investigation. Cell Tissue Res., 323: 183-196.

Couceyro P., Paquet M., Koylu E., Kuhar M.J., Smith Y. (1998). Cocaine- and amphetamine-regulated transcript (CART) peptide immunoreactivity in myenteric plexus neurons of rat ileum and co-localization with acetyltransferase. Synapse, 30: 1-8.

Crowe R., Kamm M.A., Burnstock G., Lennard-Jones J.E. (1992). Peptide-containing neurons in different regions of the submucous plexus of human sigmoid colon. Gastroenterology, 102: 461-467.

De Jonge W.J. (2013). The gut’s little brain in control of intestinal immunity. ISRN Gastroenterol., 2013: 630159.

Douglass J., Daoud S. (1996). Characterization of the human c DNAand genomic encoding CART:acocaine- and amphetamine-regulated transcript. Gene, 169: 241-245.

Douglass J., Mc Kinzie A.A., Couceyro P. (1995). PCRdifferential display identifiesarat brain m RNAthat is transcriptionally regulated by cocaine and amphetamine. J. Neurosci., 15: 2471-2481.

Dun S.L., Chianca Jr D.A., Dun N.J., Yang J., Chang J.K. (2000). Differential expression of cocaine- and amphetamine-regulated transcript-immunoreactivity in the rat spinal preganglionic nuclei. Neurosci. Lett., 294: 143-146.

Dun S.L., Castellino S.J., Yang J., Chang J.K., Dun N.J. (2001). Cocaine- and amphetamineregulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats. Brain Res. Dev. Brain Res., 131: 93-102.

Dylag T., Kotlińska J., Rafalski P., Pachuta A., Silberring J. (2006). The activity of CARTpeptide fragments. Peptides, 27: 1926-1933.

Ekblad E. (2006). CARTin the enteric nervous system. Peptides, 27: 2024-2030.

Ekblad E., Kuhar M., Wierup N., Sundler F. (2003). Cocaine- and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract. Neurogastroenterol. Motil, 15:545-557.

Elfvin L.G., Lindh B. (1982). Astudy of the extrinsic innervation of the guinea pig pylorus with the horseradish peroxidase tracing technique. J. Comp. Neurol., 208: 317-324.

Ellis L.M., Mawe G.M. (2003). Distribution and chemical coding of cocaine- and amphetamineregulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel. Cell Tissue Res., 312: 265-274.

Fekete C., Lechan R.M. (2006). Neuroendocrine implications for the association between cocaineand amphetamine regulated transcript (CART) and hypophysiotropic thyrotropin-releasing hormone (TRH). Peptides, 27: 2012-2018.

Fox- Threlkeld J.A., Mc Donald T.J., Cipris S., Woskowska Z., Daniel E.E. (1991). Galanin inhibition of vasoactive intestinal polypeptide release and circular muscle motility in the isolated perfused canine ileum. Gastroenterology, 101: 1471-1476.

Friedman J.M., Halaas J.L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395: 763-770.

Furness J.B. (2000). Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst., 81: 87-96.

Furness J.B. (2012). The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 9: 286-294.

Gańko M., Całka J. (2014 a). Localization and chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric area in the physiological state and after stomach partial resection. J. Mol. Neurosci., 52: 90-100.

Gańko M., Całka J. (2014 b). Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor vagal nucleus (DMX). J. Mol. Neurosci., 54: 188-198.

Gonkowski S. (2013). Substance Pasaneuronal factor in the enteric nervous system of the porcine descending colon in physiological conditions and during selected pathogenic processes. Biofactors, 39: 542-551.

Gonkowski S., Całka J. (2012). Changes in pituitary adenylate cyclase-activating Peptide 27-like immunoreactive nervous structures in the porcine descending colon during selected pathological processes. J. Mol. Neurosci., 3: 777-787.

Gonkowski S., Kamińska B., Bossowska A., Korzon M., Landowski P., Majewski M. (2003). The influence of experimental Bacteroides fragilis infection on substance P and somatostatin-immunoreactive neural elements in the porcine ascending colon -apreliminary report. Folia Morphol. (Warsz.), 62: 455-457.

Gonkowski S., Burliński P., Skobowiat C., Majewski M., Arciszewski M., Radziszewski P., Całka J. (2009 a). Distribution of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) nerve structures in the porcine large intestine. Acta Vet. Hung., 57: 509-520.

Gonkowski S., Kamińska B., Burliński P., Kroll A., Całka J. (2009 b). The influence of drug-resistant ulcerative colitis on the number of cocaine- and amphetamine-regulated transcript peptide-like immunoreactive (CART-LI) mucosal nerve fibers of the descending colon in children. Prz. Gastroenterol., 4: 147-151.

Gonkowski S., Burliński P., Skobowiat C., Majewski M., Całka J. (2010). Inflammation- and axotomy-induced changes in galanin-like immunoreactive (GAL-LI) nerve structures in the porcine descending colon. Acta Vet. Hung., 58: 91-103.

Gonkowski S., Burliński P., Szwajca P., Całka J. (2012 a). Changes in cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) nerve structures of the porcine descending colon during proliferative enteropathy. Bull. Vet. Inst. Pulawy, 56: 199-203.

Gonkowski S., Rychlik A., Nowicki M., Nieradka R., Bulc M., Całka J. (2012 b). Apopulation of nesfatin 1-like immunoreactive (LI) cells in the mucosal layer of the canine digestive tract. Res. Vet. Sci., 93: 1119-1121.

Gonkowski S., Kamińska B., Landowski P., Całka J. (2013). Immunohistochemical distribution of cocaine- and amphetamine-regulated transcript peptide-like immunoreactive (CART-LI) nerve fibers and various degree of co-localization with other neuronal factors in the circular muscle layer of human descending colon. Histol. Histopathol., 28: 851-858.

Gonkowski S., Obremski K., Całka J. (2015). The influence of low doses of zearalenone on distribution of selected active substances in nerve fibers within the circular muscle layer of porcine ileum. J. Mol. Neurosci., 56: 878-886.

Gunnarsdóttir A., Wierup A., Larsson L.T., Kuhar M.J., Ekblad E. (2007). CART-peptide immunoreactivity in enteric nerves in patients with Hirschprung’s disease. Eur. J. Pediatr. Surg., 17: 184-189.

Ibba - Manneschi L., Martini M., Zecchi - Orlandini S., Faussone - Pellegrini M.S. (1995). Structural organization of enteric nervous system in human colon. Histol. Hispotathol., 10: 17-25.

Janiuk I., Młynek K. (2015). Immunodetection of cocaine- and amphetamine-regulated transcript in bovine pancreas. Acta Histochem., 117: 545-550.

Jaworski J.N., Jones D.C. (2006). The role of CARTin the reward/reinforcing properties of psychostimulants. Peptides, 27: 1993-2004.

Jensen P.B., Kristensen P., Clausen J.T., Judge M.E., Hastrup S., Thim L., Wulff B.S., Foged C., Jensen J., Holst J.J., Madsen O.D. (1999). The hypothalamic satiety peptide CARTis expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett., 447: 139-143.

Kasacka I., Piotrowska Z. (2012). Evaluation of density and distribution of CART-immunoreactive structures in gastrointestinal tract of hypertensive rats. Biofactors, 38: 407-415.

Kasacka I., Janiuk I., Lewandowska A., Bekisz A., Łebkowski W. (2012 a). Distribution pattern of CART-containing neurons and cells in the human pancreas. Acta Histochem., 114:695-699.

Kasacka I., Piotrowska Z., Car H., Janiuk I., Lebkowski W. (2012 b). Cocaine- and amphetamine-regulated transcript: identification and distribution in human gastrointestinal tract. J. Biol. Regul. Homeost. Agents, 26: 419-428.

Kasparek M.S., Fatima J., Iqbal C.W., Duenes J.A., Sarr M.G. (2007). Role of VIPand substance Pin NANCinnervation in the longitudinal smooth muscle of the rat jejunum-influence of extrinsic denervation. J. Surg. Res., 141: 22-30.

Koylu E.O., Couceyro P.R., Lambert P.D., Ling N.C., De Souza E.B., Kuhar M.J. (1997). Immunohistochemical localization of novel CARTpeptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol., 9: 823-833.

Kreulen D.L., Szurszewski J.H. (1979). Nerve pathways in celiac plexus of the guinea pig. Am. J. Physiol., 237: E90-97.

Kristensen P., Judge M.E., Thim L., Ribel U., Christjansen K.N., Wulff B.S., Clausen J.T., Jensen P.B., Madsen O.D., Vrang N., Larsen P.J., Hastrup S. (1998). Hypothalamic CARTisanew anorectic peptide regulated by leptin. Nature, 393: 72-76.

Kuhar M.J., Yoho L.L. (1999). CARTpeptide analysis by Western blotting. Synapse, 33: 163-171.

Lam D.D., Zhou L., Vegge A., Xiu P.Y., Christensen B.T., Osundiji M.A., Yueh C.Y., Evans M.L., Heisler L.K. (2009). Distribution and neurochemical characterization of neurons within the nucleus of the solitary tract responsive to serotonin agonist-induced hypophagia. Behav. Brain Res., 196: 139-143.

Latorre R., Sternini C., De Giorgio R., Greenwood- Van Meerveld B. (2015). Enteroendocrine cells:areview of their role in brain-gut communication. Neurogastroenterol. Motil., Doi: 10.1111/nmo. 12754.

Läuff J.M., Modlin I.M., Tang L.H. (1999). Biological relevance of pituitary adenylate cyclaseactivating polypeptide (PACAP) in the gastrointestinal tract. Regul. Pept., 84: 1-12.

Li C., Zhu Y., Shenoy M., Pai R., Liu L., Pasricha P.J. (2013). Anatomical and functional characterization ofaduodeno-pancreatic neural reflex that can induce acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol., 304: G490-500.

Luo Y., Shen H., Liu H.S., Yu S.J., Reiner D.J., Harvey B.K., Hoffer B.J., Yang Y., Wang Y. (2013). CARTpeptide induces neuroregeneration in stroke rats. J. Cereb. Blood Flow Metab., 33: 300-310.

Maletínská L., Maixnerová J., Matysková R., Haugvicová R., Pirník Z., Kiss A., Zelezná B. (2008). Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neurosci., 9: 101.

Mao P., Meshul C.K., Thuillier P., Goldberg N.R., Reddy P.H. (2012). CARTpeptide isapotential endogenous antioxidant and preferentially localized in mitochondria. PLo S One, 7: e29343.

Mc Conalogue K., Furness J.B. (1994). Gastrointestinal neurotransmitters. Baillieres Clin. Endocrinol. Metab., 8: 51-76.

Mc Keown S.J., Stamp L., Hao M.M., Young H.M. (2013). Hirschsprung disease:adevelopmental disorder of the enteric nervous system. Wiley Interdiscip. Rev. Dev. Biol., 2: 113-129.

Million M., Wang L., Martinez V., Taché Y. (2000). Differential Fos expression in the paraventricular nucleus of the hypothalamus, sacral parasympathetic nucleus and colonic motor response to water avoidance stress in Fischer and Lewis rats. Brain Res., 877: 345-353.

Moffett M., Stanek L., Harley J., Rogge G., Asnicar M., Hsiung H., Kuhar M. (2006). Studies of cocaine- and amphetamine-regulated transcript (CART) knockout mice. Peptides, 27: 2037-2045.

Münnich J., Gäbel G., Pfannkuche H. (2008). Intrinsic ruminal innervation in ruminants of different feeding types. J. Anat., 213: 442-451.

Ogura T., Margolskee R.F., Tallini Y.N., Shui B., Kotlikoff M.I., Lin W. (2007). Immuno-localization of vesicular acetylcholine transporter in mouse taste cells and adjacent nerve fibers: indication of acetylcholine release. Cell Tissue Res., 330: 17-28.

Okumura T., Yamada H., Motomura W., Kohgo Y. (2000). Cocaine- and amphetamineregulated transcript (CART) acts in the central nervous system to inhibit gastric acid secretion via brain corticotrophin-releasing factor system. Endocrinology, 141: 2854-2860.

Palus K., Całka J. (2016). Alterations of neurochemical expression of the coeliac-superior mesenteric ganglion complex (CSMG) neurons supplying the prepyloric region of the porcine stomach following partial stomach resection. J. Chem. Neuroanat., 72: 25-33.

Palus K., Rytel L. (2013). Co-localisation of cocaine- and amphetamine-regulated transcript peptide and vasoactive intestinal polypeptide in the myenteric plexus of the porcine transverse colon. Folia Morphol. (Warsz.), 72: 328-332.

Quinson N., Robbins H.L., Clark M.J., Furness J.B. (2001). Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch. Histol. Cytol., 64: 281-294.

Rękawek W., Sobiech P., Gonkowski S., Żarczyńska K., Snarska A., Waśniewski T., Wojtkiewicz J. (2015). Distribution and chemical coding patterns of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) neurons in the enteric nervous system of the porcine stomach cardia. Pol. J. Vet. Sci., 18: 515-522.

Risold P.Y., Bernard- Franchi G., Collard C., Jacquemard C., La Roche A., Griffond B. (2006). Ontogenic expression of CART-peptides in the central nervous system and the periphery:apossible neurothrophic role? Peptides, 27: 1938-1941.

Rivera L.R., Poole D.P., Thacker M., Furness J.B. (2011). The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil., 23: 980-988.

Rychlik A., Gonkowski S., Nowicki M., Całka J. (2015). Cocaine- and amphetamineregulated transcript immunoreactive nerve fibres in the mucosal layer of the canine gastrointestinal tract under physiological conditions and in inflammatory bowel disease. Veterinarni Medicina, 60:361-367.

Sarna S.K., Otterson M.F., Ryan R.P., Cowles V.E. (1993). Nitric oxide regulates migrating motor complex cycling and its postprandial disruption. Am. J. Physiol. Gastrointest. Liver Physiol., 265: G749-G766.

Sarnelli G., Vanden Berghe P., Raeymaekers P., Janssens J., Tack J. (2004). Inhibitory effects of galanin on evoked [Ca2+]i responses in cultured myenteric neurons. Am. J. Physiol. Gastrointest. Liver Physiol., 286: G1009-G1014.

Schleiffer R., Raul F. (1997). Nitric oxide and the digestive system in mammals and non-mammalian vertebrates. Comp. Biochem. Physiol. A Physiol., 118: 965-974.

Skobowiat C., Całka J., Majewski M. (2011). Axotomy induced changes in neuronal plasticity of sympathetic chain ganglia (SCh G) neurons supplying descending colon in the pig. Exp. Mol. Pathol., 90: 13-18.

Smedh U., Moran T.H. (2003). Separable mechanisms for dorsal hindbrain CARTpeptide to inhibit gastric emptying and food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol., 284: 1418-1426.

Smith Y., Koylu E.O., Couceyro P., Kuhar M.J. (1997). Ultrastructural localization of CART (cocaine- and amphetamine-regulated transcript) peptides in the nucleus accumbens of monkeys. Synapse, 27: 90-94.

Spiess J., Villareal J., Vale W. (1981). Isolation and sequence analysis of somatostatine-like polypeptide from ovine hypothalamus. Biochemistry, 20: 1982-1988.

Su H.C., Bishop A.E., Power R.F., Hamada Y., Polak J.M. (1987). Dual intrinsic and extrinsic origins of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J. Neurosci., 7:2674-2687.

Tan L.L., Bornstein J.C., Anderson C.R. (2008). Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience, 156: 334-343.

Tebbe J.J., Ortmann E., Schumacher K., M önnikes H., Kobelt P., Arnold R., Schäfer M.K. (2004). Cocaine- and amphetamine-regulated transcript stimulates colonic motility via central CRFreceptor activation and peripheral cholinergic pathways in fed, conscious rats. Neurogastroenterol. Motil., 16: 489-496.

Thor P.J., Sendur R., Konturek S. (1982). Influence of substance Pon myoelectric activity of the small bowel. Am. J. Physiol., 243: 493-496.

Timmermans J.P., Scheuermann D.W., Stach W., Adriaensen D., De Groodt - Lasseel M.H. (1992). Functional morphology of the enteric nervous system with special reference to large mammals. Eur. J. Morphol., 30: 113-122.

Van Geldre L.A., Lefebvre R.A. (2004). Interaction of NOand VIPin gastrointestinal smooth muscle relaxation. Curr. Pharm. Des., 10: 2483-2497.

Vasina V., Barbara G., Talamonti L., Stanghellini V., Corinaldesi R., Tonini M., De Ponti F., De Giorgio R. (2006). Enteric neuroplasticity evoked by inflammation. Auton. Neurosci., 126-127: 264-272.

Verma N., Rettenmeier A.W., Schmitz- Spanke S. (2011). Recent advances in the use of Sus scrofa (pig) asamodel system for proteomic studies. Proteomics, 11: 776-793.

Vicentic A., Jones D.C. (2007). The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J. Pharmacol. Exp. Ther., 320: 499-506.

Vrang N., Larsen P.J., Clausen J.T., Kristensen P. (1999). Neurochemical characterization of hypothalamic cocaine-amphetamine-regulated transcript neurons. J. Neurosci., 19: RC5 1 of 8.

Wierup N., Sundler F. (2006). CARTisanovel islet regulatory peptide. Peptides, 27: 2031-2036.

Wierup N., Kuhar M., Nilsson B.O., Mulder H., Ekblad E., Sundler F. (2004). Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development. J. Histochem. Cytochem., 52: 169-177.

Wierup N., Gunnarsdóttir A., Ekblad E., Sundler F. (2007). Characterisation of CARTcontaining neurons and cells in the porcine pancreas, gastro-intestinal tract, adrenal and thyroid glands. BMC Neurosci., 8: 51.

Wojtkiewicz J., Gonkowski S., Bladowski M., Majewski M. (2012). Characterisation of cocaine- and amphetamine-regulated transcript-like immunoreactive (CART-LI) enteric neurons in the porcine small intestine. Acta Vet. Hung., 60: 371-381.

Wojtkiewicz J., Równiak M., Crayton R., Gonkowski S., Robak A., Załęcki M., Majewski M., Klimaschewski L. (2013). Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J. Mol. Neurosci., 51: 99-108.

Won M.H., Matsuo K., Oh Y.S., Kitoh J. (1998). Brainstem topology of the vagal motoneurons projecting to the esophagus and stomach in the house musk shrew, Suncus murinus. J. Auton. Nerv. Syst., 68: 171-181.

Wu B., Hu S., Yang M., Pan H., Zhu S. (2006). CARTpeptide promotes the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor. Biochem. Biophys. Res. Commun., 347: 656-661.

Yoon H.S., Adachi N., Kunugi H. (2014). Microinjection of cocaine- and amphetamine-regulated transcript 55-102 peptide into the nucleus accumbens could modulate anxiety-related behavior in rats. Neuropeptides, 48: 319-325.

Zacharko - Siembida A., Arciszewski M.B. (2014). Immunoreactivity to cocaine- and amphetamine- regulated transcript in the enteric nervous system of the pig and wild boar stomach. Anat. Histol. Embryol., 43: 48-55.

Zacharko - Siembida A., Kulik P., Szalak R., Lalak R., Arsiszewski M.B. (2014). Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig. Acta Histochem., 116: 390-398.

Zheng H., Patterson L.M., Berthoud H.R. (2002). CARTin the dorsal vagal complex: sources of immunoreactivity and effects on Fos expression and food intake. Brain Res., 957: 298-310.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2017: 1.018
5-year IMPACT FACTOR: 0.959



CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.413
Source Normalized Impact per Paper (SNIP) 2017: 0.822

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 262 257 35
PDF Downloads 138 136 25