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Abstract
The aim of this review is to present and discuss the anatomy and physiology of crop in different 
avian species. The avian crop (ingluvies) present in most omnivorous and herbivorous bird spe-
cies, plays a major role in feed storage and moistening, as well as functional barrier for pathogens 
through decreasing pH value by microbial fermentation. Moreover, recent data suggest that this 
gastrointestinal tract segment may play an important role in the regulation of the innate immune 
system of birds. In some avian species ingluvies secretes “crop milk” which provides high nutri-
ents and energy content for nestlings growth. The crop has a crucial role in enhancing exogenous 
enzymes efficiency (for instance phytase and microbial amylase, β-glucanase), as well as the activ-
ity of bacteriocins. Thus, ingluvies may have a significant impact on bird performance and health 
status during all stages of rearing. Efficient use of the crop in case of digesta retention time is es-
sential for birds’ growth performance. Thus, a functionality of the crop is dependent on a number 
of factors, including age, dietary factors, infections as well as flock management. It is important 
to expand knowledge about the crop functions to use them effectively in poultry production. Fur-
thermore, more scientific data is needed in the scope of immunological function of the crop as well 
as its microecosystem for a better understanding of the avian immune system and enhancing the 
health of the birds.
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Crop anatomy
Crop (ingluvies) is a tubular organ which is an enlarged part of the esophagus. 

Depending on its anatomy it is classified as rudimentary crop (e.g. Anseriformes), 
i.e. long and narrow, occupying a small space, either “false crop” – simple diverticu-
lum of the esophagus (e.g. Gyps fulvus) or “real crop” (e.g. Galliformes) – well-de-
veloped and round-shaped bilobed enlargement (Farner, 1960). In the case of Gallus 
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gallus var. domesticus, ingluvies is characterized by thin wall, 4.5–5.0 cm of length 
and 8–10 cm3 capacity. The crop wall is attached to the skin and to the clavicle (clav-
icula s. furcular) by the loose connective tissue as well as to the sternum by musculus 
compressor ingluvialis (Langenfeld, 1992). Furthermore, m. cucullaris capitis pars 
clavicularis forms a surface i.e. m. levator ingluviei which supports crop position 
(McLelland, 1993). Through the crop entrance (ostium ingluviale), the feed is trans-
ferred to the singular diverticulum (Galliformes) and then down to fundus ingluvialis 
(Kobryń and Kobryńczuk, 2004). Anatomical topography of the crop strictly depends 
on species. Ingluvies lies mainly to the right of the trachea, e.g. Galliformes and 
Falconiformes crop is located at the thoracic inlet; in Psittaciformes it is stretched 
transversely across the neck. Pigeons have two large lateral diverticula on both sides 
of the trachea and small enlargement in the median side (diverticulum ingluviale sin-
istrum, dextrum et medianum). In parrots crop lies at the caudal-cervical part of es-
ophagus and has two pouches – bigger on the right and smaller on the left; the filled 
crop of some nectivoro-insectivorous birds as well as nestlings of Chloris chloris 
and Taeniopygia guttata is located dorsally over the vertebral column; Opisthocomus 
hoazin has the largest crop, which consists of cervical and thoracic parts of esopha-
gus (Niethammer, 1933; Eber, 1956; McLelland, 1990; McLelland, 1993; Lumeij, 
1994). A cross section through the entire chicken crop wall allows distinguishing 
the following parts: incompletely keratinized stratified squamous epithelium, lamina 
propria, mucous glands – gll. ingluviales (near esophageal area or their lack, depends 
on the authors), muscular mucosae, submucosa, inner circular muscle layer and lon-
gitudinal muscle layer (McLelland, 1990; Doneley, 2010). Tunica mucosae ingluviei 
contains plicae et rugae ingluviei (McLelland, 1993). The crops’ muscular layer in 
Strigops habroptila and Opisthocomus hoazin is well developed and may play a role 
in mechanical grind of food (Szarski and Grodziński, 1987). Despite the fact that 
birds do not develop esophageal sphincters like mammals (Klasing, 1999), in the 
case of parrots and pigeons it is possible to identify a functionally similar structure 
which is located at the junction of the crop and the thoracic esophagus, which allows 
portioning of feed formation (Taylor, 2000).

The crop in different avian species
The size of the crop and its shape constitute species-specific features (Figure 1) 

(Godoy-Vitorino et al., 2008). This fact is determined by the birds’ evolutionary ad-
aptation to their diet, environment and behavior, i.e. through the rapid feed ingestion 
in stressful conditions and then digestion in a safety refuge (Gelis, 2006). Stevens 
and Hume (1998) point out that omnivores and herbivores, including granivorous 
birds, are characterized by a larger crop than carnivorous predators. Particularly 
noteworthy is the hoatzin (Opisthocomus hoazin), whose enlarged esophagus is the 
largest part of its digestive tract (Figure 2). Zheng et al. (2011), based on studies 
carried out on fossils at the Tianyu Museum of Nature, hypothesize that the develop-
ment of the crop together with adaptation to the intake of a specific diet (e.g. gastro-
liths) had a significant impact on the reduction or total deprivation of teeth in birds 
from the Cretaceous period. However, not all present representatives of birds (Aves), 
for example, seagulls, penguins, geese and ostriches, have a developed esophagus 
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forming the crop (Table 1) (Denbow, 2000; López-Calleja and Bozinovic, 2000). On 
the other hand, some species, e.g. European goldfinch (Carduelis carduelis), devel-
oped an extensible esophageal pouch which is able to play a feed storage function 
like the crop (Klasing, 1999). Furthermore, esophageal diverticula or enlargements 
(saccus esophagealis) may be involved in courtship as resonating chambers and/or 
display devices, e.g. in several species of grouse, cranes and pigeons (Farner, 1960; 
Lumeij, 1994; Kobryń and Kobryńczuk, 2004). However, it should be noted that 
great bustard (Otis tarda), as well as frigatebird (Fregata magnificens) have a gular 
pouch which has the same function but another structure (Farner, 1960; Madsen et 
al., 2007). 

Figure 1. Shape of crop in selected bird species: a) cormorant (Phalacrocorax carbo) – rudimentary 
crop, b) peacock (Pavo sp.) – “true” crop, c) budgerigar (Melopsittacus undulatus), d) pigeon  
(Columbidae), e) “false” crop, e-h) different shapes of crop in Cacatuidae (King and McLelland, 1984)

Figure 2. Diagram of the gastrointestinal tract: a) hoatzin (Opisthocomus hoazin), b) turkey (Meleagris 
gallopavo), c) goose (Anser anser), d) striated heron (Butorides striatus); cr – indicating the crop (based 

on Godoy-Vitorino et al., 2008; Montaner et al., 1997; Clemens et al., 1975; Duke, 1989)
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The crop functions
Crop in the case of nestlings’ growth
In many avian species, crop plays an important role in the rearing of nestlings 

(e.g. pigeons, parrots, finches) (Lumeij, 1994). On the one hand, it stores initially in-
gested feed that is passed on or obtained directly by the young, and on the other hand 
in individual species, i.e. pigeons (Columbiformes) and flamingos (e.g. Phoenicop-
terus ruber), it secretes so-called crop milk (Studer-Thiersch, 1967; Gillespie et al., 
2012). This substance is also produced by emperor penguins (Aptenodytes forsteri), 
however, it is synthesized through the esophagus due to the lack of an anatomically 
separated crop (Prévost et al., 1963; Kirk Baer, 1999). 

The phenomenon of crop milk presence and secretion was first described by 
Hunter in 1786 (Hunter, 1840). It involves the secretion of prolactin causing hy-
perplasia of the mucosa (Riddle et al., 1933). Further, on account of the holocrine 
secretion, the exfoliating epithelium is mixed with the previously collected food 
forming a semi-solid substance (Kirk Baer, 1999). The composition of crop milk 
is species-specific (Table 2) and is characterized by a protein content of 50–60% 
(in dry matter), 32–45% of fat (including triglycerides, phospholipids, cholesterol, 
free fatty acids and cholesterol esters and diglycerides), and carbohydrates (1–3%) 
which, due to low concentration levels, are often overlooked (Davies, 1939; Des-
meth and Vandeputte-Poma, 1980; Kirk Baer, 1999). Furthermore, this secretion 
is rich in keratinocytes and macroelements, i.e. calcium, phosphorus, sodium, and 
potassium (crude ash: 4.4–4.8%) (Davies, 1939). Due to the biology of short-term 
rearing of pigeon nestlings (10-40 days, depending on the species) the milk consti-
tutes a food that is easily digestible, highly energetic and rich in immunoglobulin A 
(Goudswaard et al., 1979). In addition, this secretion contains bioactive substances 
such as: transferrin, glycoproteins (with the same sequence as lactoferrin) and a spe-
cific growth factor – Pigeon Milk Growth Factor (PMGF) (Frelinger, 1971; Shetty et 
al., 1992; Shetty and Hegde, 1993; Wally and Buchanan, 2007). It has been shown 
that this secretion, in the case of the flamingo, is characterized by the abundance of 
canthaxanthin, leukocytes and erythrocytes (Lang, 1963). It is also interesting that 
the introduction of substitute crop milk into chicks of pigeons led to their death or 
abnormal growth of young birds (Guareschi, 1936). This suggests the presence of 
immune-modulating factors such as immunoglobulins and cytokines, like in the case 
of mammals milk (Wagstrom et al., 2000; Stelwagen et al., 2009), which is necessary 
during post-hatching period. 

Research work related to the supplementation of broiler chicken diets with pi-
geon crop milk resulted in an increased rate of growth when compared with the 
control group without its addition (Pace et al., 1952; Hegde, 1973). It is believed that 
the reason for this could be the higher energetic value of the feed and the beneficial 
effects of bacteria and bioactive substances contained in crop milk. The research of 
Gillespie et al. (2012) showed that pigeon crop milk supplemented to broiler chicken 
diet have a significant impact on their immune system by gene expression in the 
GALT (gut-associated lymphoid tissue), regulation of cytokine production and acti-
vation and proliferation of B-lymphocytes. Furthermore, the impact of crop milk was 
proven on beneficial diversification of the composition of the microbiota of chickens, 
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due to its pre- and probiotic properties. Therefore, it was suggested that crop milk is 
characterized by analogous properties to the milk secreted by mammals (Gillespie 
et al., 2012). At the same time, the fact of evolutionarily independent development 
process of the formation of this secretion is fascinating.

Table 2. Comparison of crop or esophagus secretion composition in selected species of birds (adapted 
from Campbell and Lack, 2011)

Pigeon1 American flamingo  
(Phoenicopterus ruber)2

Emperor penguin  
(Aptenodytes forsteri)

Protein 58.4 32.5 59.3

Fat 35.1 65.3 28.3

Carbohydrates – 0.8 7.8

Minerals 6.5 1.4 4.6
1Water content 74%.
2Water content 73%.

The role of the crop in scope of feed intake
Due to the relatively low volume of the glandular stomach and gizzard in com-

parison to body mass, birds (as the only vertebrates) developed an organ for transi-
tional digesta storage. It was noted that up to 50% of the diet consumed in the morn-
ing and the afternoon goes directly to the crop of turkeys (Jackson and Duke, 1995). 
However, broiler chickens fed ad libitum do not use the maximum capacity of this 
organ due to a continuous manner of feed intake (Nielsen, 2004). It was experimen-
tally documented by cropectomy that crop does not play a crucial role in controlling 
feed intake in ad libitum fed birds (Fisher and Weiss, 1956). Moreover, in the case 
of cropectomized Japanese quails (Coturnix coturnix japonica), birds may store feed 
in the esophagus at the same amount as a crop (Savory, 1985). Therefore, from the 
practical point of view, the crop acts as a storage of food in a situation when the feed 
is provided in an intermittent feeding system, but is not involved in the regulation of 
feed intake in a continuous manner (Jackson and Duke, 1995; Svihus et al., 2013). 
It must be noted that crop usage is linked with natural foraging behavior, e.g. least 
frequency and a large amount of feed intake (Savory, 1985), as well as day length 
(Irving et al., 1967). The same results of decreasing of filling crop were noticed in 
diluted diet with application of an indigestible filler (Fisher and Weiss, 1956; Slater, 
1974). These data are contrary to reports discussing the impact of mechanoreceptors 
located in the wall of the crop as regulators of feed intake (Richardson, 1970; Hodg-
kiss, 1981). Explanation of this process should be traced, like in the case of other ani-
mals, including mammals, to the mechanism of stimulating the vagus nerve through 
the work of stomach muscles (Denbow, 1994), as well as humoral effects (ghrelin, 
gastrin, cholecystokinin) (Richards and Proszkowiec-Weglarz, 2007). Thus, the fill-
ing of the crop is closely dependent on the volume of food in the two-part stomach 
(proventriculus and ventriculus), whose capacity in chickens is estimated at up to 
5–10 g of feed (Svihus, 2014). When this organ is filled up completely, storage of 
feed in the crop takes place (Jackson and Duke, 1995). After a while, when the giz-
zard is emptied, muscle contractions cause the passage of content to further sections 
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of the intestinal tract (Langenfeld, 1992). Therefore, the functions of the anterior 
digestive tract are closely linked, and affect the peristalsis of further sections of the 
digestive system. The time which is needed for the bolus to pass from the crop to the 
gizzard is around 5–30 seconds (Henry et al., 1933), moreover, the pressure used in 
this process (in laying hens) is in the range from 7 to 18 cm H2O (Groebbels, 1932). 
Furthermore, it is possible, especially in the carnivorous birds (e.g. Accipiter gen-
tilis) that the crop fills first, and after a few minutes the peristaltic movements push  
a prey into the stomach (Dedič, 1930). 

In chickens the volume of the crop is closely related to body weight, gender, as 
well as its breed. It has been shown that with increasing body weight of laying hens 
(Quisenberry, 1971) and broiler chickens (Wehner and Harrold, 1982) its crop vo- 
lume increases proportionally. Moreover, reduced sizes of this section have been ob-
served in hens. Further, males of broiler chickens are characterized by a much higher 
crop volume when compared with the Single Comb White Leghorns (Table 3).

Table 3. Dependence of the crop volume on body weight, sex, and breed of chickens (adapted from 
Wehner and Harrold, 1981)

Type Average body weight 
(kg)

Average crop volume 
(cm3)

Crop volume to body 
weight ratio 

(cm3/kg)

SCWL laying hens 1.8 71.1 a 38.7 a

Lightweight roosters SCWL 1.9 95.8 b 51.2 b

Heavyweight roosters SCWL 3.2 169.3 c 52.9 c

Broiler cockerels 3.2 214.3 d 67.4 d

a, b, c, d – values differ at the significance level of P≤0.05.
SCWL – Single Comb White Leghorn.

Feeding ad libitum results in reduced physical use of the crop by chickens (Svi-
hus et al., 2010) due to the fact of adjusting the frequency of feed intake (on average 
every half hour) to the rate of passage of the digesta (Svihus et al., 2013). Boa-
Amponsem et al. (1991) confirmed that filling the crop in slow- and fast-growing 
chickens varies depending on the feeding system. It was also reported that the chick-
ens adapting to environmental conditions (two feedings per day) could collect up to 
40% of the daily dose at once, while using the crop, glandular stomach and gizzard 
as organs that store the feed (Barash et al., 1992; Buyse et al., 1993). In addition, free 
range farming caused an increase in the use of storage functions of the crop (Mwalu-
sanya et al., 2002; Mekonnen et al., 2010). Therefore, it is possible that access to 
additional structural feeds results in increased feed intake, through which the crop is 
stimulated to intensified work. However, studies that were conducted on the use of 
various forms of physical feeds (pellets, coarsely ground, fine) for broiler chickens, 
did not show statistically significant differences in the impact of the structure of the 
diet on the mass of the crop content (Sacranie et al., 2012). The reduction in pH value 
was observed (5.1 vs. 5.6) in the crop of birds fed finely ground (1 mm) diet (Svihus 
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et al., 2013). It should be emphasized that in clinical condition (fluid therapy), the 
optimal amount of feed directly placed into the crop is within the 3–5% of bird’s 
normal body weight (Quesenberry and Hillyer, 1994).

The crop and the efficiency of feed additives
Effective use of the crop organ is closely related to its filling and the rate of 

passage content. Therefore, the retention time of digesta during restrictive feeding 
of chickens should be noted. In an interval of 1 hour after the last feeding as much 
as 40 g DM of feed was observed in the crop. A significant amount of content was 
noticed even 4 or 5 hours after feeding, but it amounted to an average of 10 g (Buyse 
et al., 1993; Svihus et al., 2002). It is believed that due to the lack of endogenous 
enzymes secretion by the crop, it does not fulfill important functions in the diges-
tion of feed. However, the study by Ponte et al. (2008) mentioned the possibility of 
synthesizing β-glucanase of bacterial origin in this segment, which may affect the 
activity of exogenous feed enzymes. In addition, the crop plays an important role in 
moistening the feed, which supports enzymatic degradation in subsequent sections 
of the digestive tract. At the same time, other substances activated by moistening, 
including exogenous feed enzymes, can potentially positively affect the nutrient’s 
digestibility. The crop is the only part of the bird’s gastrointestinal tract where the 
activity of digestive enzymes depends on the water content. Moreover, retention of  
a wet digesta takes prolonged time in comparison to short-term remaining of dry feed 
in the crop (Sturkie, 1976 a). Thus, the moistening time of feed is an important factor 
in determining the effectiveness of exogenous enzymes; however, this only applies 
to a situation where the crop is the place of their main activity. So, gradual moisten-
ing of the crop content in time was observed, increasing even by 50% within 60 min-
utes (Svihus et al., 2010). Furthermore, the light schedule changes from continuous 
to intermittent may enhance the effectiveness of exogenous enzymes by elongation 
of feed retention in the crop (Ao, 2005). Svihus et al. (2010) proved that the use of 
restricted feeding, thanks to the use of the crop by birds as a transitional feed stor-
age, may have an impact on better growth performance of chickens. This is because 
of an increase in the efficiency of exogenous phytase. There was a 50% reduction 
in digesta phytic acid at 100 minutes retention of digesta in this segment of the gas-
trointestinal tract. In the in vitro experiment by Denstadli et al. (2006), degradation 
of phytic acid (IP6) reached up to 86% during 45 min of incubation in conditions 
similar to those in the crop. It has been repeatedly proven that the crop plays a major 
role in creating an environment for phytase activity synthesized, among others, by 
Aspergillus niger, Mitsuokella jalaludinii or Peniophora lycii (Liebert et al., 1993; 
Onyango et al., 2005; Lan et al., 2010). 

The acidic environment of the crop is crucial to optimal efficacy of the exog-
enous enzymes added to the chicken diets. It is well-documented that bacterial or 
fungal enzymes show the highest activity at pH 4.0–6.0 (Coughlan, 1985; Ademark 
et al., 2001; Beauchemin et al., 2003; Greiner and Konietzny, 2011). In the situation 
where pH value is above 6.5 (up to 3 h after feeding) the enzymes activities are de-
creased to 10–15% of effectiveness at pH 4.5 or 5.5 (Baas and Thacker, 1996). Thus, 
the crop allows for a thorough utilization of exogenous enzymes by decreasing the 



B. Kierończyk et al.662

pH value of digesta through the Lactobacilli fermentation. It should be noticed that 
disturbances of microbial composition may be a limiting factor for maximizing the 
enzyme activity.

Another feature of ingluvies, through the blood vessels presence, is absorption 
of nutrients (Bolton, 1965). This property is frequently overlooked due to the fact of 
minimal intensity of this process or its absence. Some authors indicated that glucose 
(Bolton, 1965; Pritchard, 1972), threonine (Teekell et al., 1967) and β-carotene (in 
the presence of bile) (Sibbald and Hutcheson, 1959) could be absorbed directly from 
the crop. In contrast to that, botulinus toxin is not absorbed through the crop (Leasure 
and Foltz, 1940).

The environment of the crop and its functioning
The digesta in crop is characterized by a high variability of pH (Table 4), which 

according to various scientific reports of healthy birds ranges from 4.0 to 7.8 (Gal-
lus gallus var. domesticus) (Herpol and van Grembergen, 1967; Józefiak et al., 
2008,  2011, 2014). In the case of sour-crop the pH value can be as low as 3.7 
(Bolton, 1965). Feeds for nonruminants usually have pH values around 6.0 (Ao, 
2005). Therefore, it may be assumed that when the content begins to be stored, the 
pH will be formed at a similar level (Ao et al., 2008). However, prolonged reten-
tion is associated with a significant increase in the fermentation activity of the en-
dogenous microbiota. Organic acids synthesized by the bacteria effectively reduce 
the pH value (Hilmi et al., 2007). Thus, the different storage time of the content 
is associated with a different intensity of fermentation, and hence the concentra-
tion of hydrogen ions and other products of microbial activity. Bolton (1965) con-
firmed that the pH value decreases with prolonged retention time of feed in the crop, 
but it concerned only broiler chickens. In the case of laying hens similar effects 
were not observed due to the high dietary content of limestone characterized by  
a high buffering capacity. Moreover, the addition of acidifiers (formic and propionic 
acids) to the diets for laying hens did not affect pH change in the crop. In contrast, 
it had negative effects by reducing the number of lactic acid bacteria and decreased 
the concentration of short-chain fatty acids (Thompson and Hinton, 1997). Besides, 
addition of 25 g/kg of the propionate ion to the hen diet resulted in chronic damage 
of the crop epithelium (Bolton and Dewar, 1965). Insufficient activity of the fermen-
tation of carbohydrates by lactic acid bacteria in the crop, for example, through lack 
of feeding during transport, reduces their population and the concentration of the 
product, i.e. lactic acid.

It has to be emphasized that complete emptying of the crop in broiler chickens 
takes less than four hours (May and Deaton, 1989), although this may be dependent 
on feeding and management. This affects the sudden drop in bacterial activity and, 
consequently, an increase in pH. The most preferred conditions for the reproduction 
of Salmonella sp. are in the range of pH 6.0–7.5, for the remaining Enterobacteriace-
ae, including E. coli, this range is slightly wider, i.e. from 6.0 to 8.0 (Banwart, 1979). 
In this case, the crop’s ability to resist pathogen invasion significantly decreases. 
This allows the colonization and stabilization of Enterobacteriaceae and Salmonella 
spp. in the gastrointestinal tract of the host (Fuller, 1977).
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To conclude, the functionality of the crop will be dependent not only on the feed-
ing system of animals and their behavior, but also on alimentary factors, as well as 
the presence of buffering substances.

Table 4. The crop pH value in selected avian species and poultry breeds
Breed pH value References

Broiler chickens
ROSS 308 4.5–5.8 Józefiak et al. (2012) 

Svihus et al. (2013) 
Amerah et al. (2014)

COBB-Vantress male broiler 3.4–6.8 Ao et al. (2009) 
Fonseca et al. (2010) 
Alali et al. (2013)

COBB 500 4.3–5.1 Rubio-García et al. (2015)
Józefiak et al. (2005)

Feed withdrawal broilers 5.3–6.5 Hinton et al. (2000 a) 
Hinton et al. (2000 b)

Laying hens
Hy-Line® W-36 4.1–5.9 Gordon and Roland (1997) 

Moore et al. (2004)
Single Comb White Leghorn hens 4.1–6.0 Kubena et al. (2005) 

Woodward et al. (2005)
Medium-weight hens (Warren) 4.8–6.0 Mongin (1976)
Indigenous Venda chickens 4.9±0.210 Mabelebele et al. (2014)
Laying hens fed molt diet 4.6–6.2 Donalson et al. (2008)

Turkey 5.3–6.2 Farner (1942) 
Bennett et al. (2002) 
Giannenas et al. (2014)

Duck 4.8–5.1 Farner (1942)
Goose 4.1–5.0 Clemens et al. (1975)
Others:

Pigeon 4.1–4.4
6.3

Farner (1942)
Sturkie (1976 b)

Pheasant 5.6–6.0 Farner (1942)
Hoatzin 6.0–6.8 Grajal et al. (1989) 

Grajal (1995)

The crop microbiota composition and its properties
The environment of ingluvies is favorable to bacterial growth, it is maintained 

at a temperature of 40°C, as well as essentially anaerobic conditions (Bolton, 1965). 
The microbiota of bird crops develops together with age and the changing diet (Go-
doy-Vitorino et al., 2010). The majority of the microbiome inhabiting the crop are 
bacteria assigned to the Lactobacillus spp. (Table 5, 6) (Salminen et al., 1993; Mack-
ie et al., 1997). The most frequently isolated representatives of this type include 
Lactobacillus salivarius, L. fermentum, L. reuteri and L. acidophilus. However, for 
L. acidophilus, due to reclassification two homologous groups have been separated 
(A and B) containing six species, i.e. L. acidophilus (A1), L. crispatus (A2), L. amy-
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lovorus (A3), L. gallinarum (A4) L. gasseri (B1) and L. johnsonii (B2) (Lauer et al., 
1980; Fujisawa et al., 1992; Jensen et al., 1993). Flora is very stable and permanently 
attached to the crop, as evidenced by the colonization of these bacteria in just 1 hour 
after hatching. At the same time, there were no effects of the diet and rearing condi-
tions on the process of bacterial colonization in the first hours of life (Fuller, 2001). 
In addition, the crop is also inhabited by the representatives of Bifidobacterium, En-
terococcus, and Enterobacter (Yeoman et al., 2012). Generally, bacteria in the crop 
are concentrated at a high level of about 109/g (Figure 3) (Oakley et al., 2014). 

Table 5. Identification of bacterial isolates (n=300) from the crop of broiler chickens through partial 
sequencing the 16S RNA gene (Hilmi et al., 2007)

Species Number of isolates % 
of isolates

Number of isolates detected 
in 8 crop samples

L. acidophilus/L. johnsonii 5 1.7 4
L. crispatus 56 18.7 7
L. gallinarum 1 0.3 1
L. helveticus 1 0.3 1
L. pentosus 1 0.3 1
L. reuteri 99 33.0 7
L. salivarius 40 13.3 7
Lactobacillus sp. oral clone CX36 6 2.0 3
Lactobacillus sp. strain CLE-4 1 0.3 1
Lactobacillus spp.a 83 27.7 8
P. acidilactici 7 2.3 2
Total 300 100 8

a Bacteria of the genus Lactobacillus not assigned to species.

In the case of adult individuals of Opisthocomus hoazin, the microbial content 
of the crop closely resembles the rumen of ruminant animals and is dominated by 
Bacteroidetes, Firmicutes and Proteobacteria (Godoy-Vitorino et al., 2012). In ad-
dition, there are relatively high concentrations of Spirochaetes, Synergistes or Ac-
idobacteria, and for the first time for vertebrates Aquificae, Coprothermobacteria, 
Thermodesulfobacteria and Caldithrix (Godoy-Vitorino et al., 2010). In the critically 
endangered (126 individuals) (IUCN, 2015), endemic for New Zealand, flightless 
and heaviest of parrots – kakapo (Strigops habroptilus), bacterial flora of the crop is 
limited to Gammaproteobacteria and Firmicutes (Waite et al., 2012). Moreover, in 
95% of cases, the microbiome of the gastrointestinal tract of this species belongs to 
the genera Escherichia and Streptococcus (Waite and Taylor, 2015). It is believed 
that this difference is caused by the specific behavior of food intake consisting in the 
“chewing” of plant material and then leaving out the fibrous fraction (Horrocks et 
al., 2008). However, not all parrots are characterized by such a little differentiated 
microbiota of the gastrointestinal tract. For the green-rumped parrotlet (Forpus pas-
serinus) the crop is populated by gram-positive bacteria of the genera Lactobacillus, 
Streptococcus, Enterococcus, Pediococcus and Propionibacterium, and gram-nega-
tive, i.e. Enterobacter, Klebsiella, and Escherichia coli (Pacheco et al., 2004).
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Figure 3. Primary and secondary immunological tissues, indicating the crop (based on Glick, 2000; 
Yeoman et al., 2012)

In the case of most birds, including chickens (Gallus gallus var. domesticus), 
helmeted guinea fowl (Numidia meleagris), great bustard (Otis tarda) and North Af-
rican ostrich (Struthio camelus), the main fermentation of carbohydrates takes place 
in the caeca (Józefiak et al., 2004, 2005, 2007, 2010). Species collecting plant food 
and not having this organ had to develop alternative mechanisms. The green-rumped 
parrotlet (Forpus passerinus) uses the ability of microorganisms naturally present 
in the crop (Lactobacillus and Streptococcus) for the production of amylase which 
decomposes starch into maltose, maltotriose and glucose (Champ et al., 1983; Ko-
tarski et al., 1992). This process greatly simplifies the distribution of carbohydrates 
in the subsequent sections of the digestive tract. In addition, glucose may simultane-
ously be absorbed by the mucous membrane of the crop or used as a substrate for the 
production of volatile fatty acids (E. coli, Klebsiella spp., and Enterobacter), which 
constitute one of the sources of energy for the bird and maintains an acidic environ-
ment (Soedarmo et al., 1961; Stevens and Hume, 2004). Due to the hard-digestible 
diet of the parrotlet, the retention time of the content will play an important role in 
increasing the efficiency of the microbiota. Moreover, due to the intake of feed poor 
in protein, the flora of the crop takes part in increasing the level of this nutrient in the 
diet (Pacheco, 2000, Ph.D. dissertation). 
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The crop as the first barrier to the colonization of microbiota is particularly im-
portant in terms of integrity and homeostasis of the microbiome of further sections 
of the gastrointestinal tract. Bayer et al. (1974) due to the structure of the mucosa 
and biodiversity of the microbiome, compares the crop of chickens to the rumen. Mi-
crobiota of the digestive tract and crop are divided into two groups in terms of their 
environmental niche: bacteria residing in its lumen, and bacteria closely associated 
with the mucosa (Dubos et al., 1965). The close link between endogenous micro-
organisms and the host causes it to have a significant impact on bird’s metabolism 
and health. This thesis is confirmed by the fact that bacteria, e.g. Escherichia coli, to 
cause pathological conditions, must first bind to the host’s epithelial mucosa (Fuller 
and Brooker, 1974). The same situation was observed for Vibrio cholerae, which 
even in substantial numbers in the intestinal lumen did not cause disease symptoms 
(Freter, 1969). 

The concentrations and biodiversity of different microbiota populations are sig-
nificantly correlated with filling the crop. Fasting chickens before being transported 
to the slaughterhouse may contribute to the growth of bacteria of the genus Salmo-
nella in the crop and caeca (Hargis et al., 1995; Ramirez et al., 1997). Subsequently, 
during technological processes there is a high probability of contamination of chick-
en carcasses (Hinton et al., 2000 b). The natural defense of the host against the colo-
nization of Enterobacteriaceae is competitive exclusion by populations of probiotic 
commensal bacteria, as well as decreasing the pH by the increase in the activity of 
microbial fermentation (Hinton et al., 1990). However, fasting may cause physical, 
chemical and microbiological changes in the crop of broiler chickens, which will 
reduce the natural resistance of birds to the potentially pathogenic bacteria. How-
ever, it should be emphasized that some representatives of Enterobacteriaceae (e.g. 
E. coli) are an integral part of the microbiota of the digestive system of animals and 
only in certain situations, when homeostasis wavers, negative effects on health status 
of their presence occur.

It has been reported many times that both gram-positive and gram-negative  
organisms are capable of secreting bacteriocins (Józefiak and Sip, 2013). Bacte-
riocins are ribosome-synthesized peptides not exceeding the molecular weight  
of a dozen kDa, which are characterized by antimicrobial properties (Stern et 
al., 2006). Jack et al. (1995) and Montville et al. (1995) classify microorganisms  
naturally present in the crop, i.e. Lactobacillus, Bifidobacterium, Enterococcus, 
and Enterobacter to bacteriocinogenic bacteria. This activity effectively limits po- 
tentially pathogenic strains in the crop of the bird host. Stern et al. (2006) ob- 
served that bacteriocin produced by Lactobacillus salivarius (NRRL B-30514)  
reduces the number of four strains of Campylobacter jejuni. It has been shown  
that Bifidocin B (Bifidobacterium bifidum) may exhibit antagonistic activity  
towards Listeria, Enterococcus, Leuconostoc and Pediococcus (Yildirim and John-
son, 1998). Bacteriocinogenic activity of Enterococcus faecium results in the inhi- 
bition of growth of Listeria monocytogenes (Strompfova and Laukova, 2007). Lau-
ková et al. (1993) observed that Enterocin A (E. faecium) effectively limits the con-
centration of Salmonella dusseldorf SA31 in the gastrointestinal tract of Japanese 
quail. 
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The crop is the most important GIT segment for bacteriocins activity due to the 
specific environment and lack of endogenous proteolytic enzymes such as pepsin or 
trypsin (Józefiak et al., 2013). However, bacteriocins are not the only antimicrobial 
factors present in this section of the gastrointestinal tract. Lactobacillus reuteri, by 
far the most numerous bacteria of the genus Lactobacillus in the crop, i.e. 33% of the 
total, due to anaerobic fermentation of glycerol, is able to produce reuterin (Axelsson 
et al., 1989). Reuterin is resistant to degradation with the use of endogenous proteo-
lytic and lipolytic enzymes; its activity remains in a wide pH range and it dissolves 
in water (El-Ziney et al., 1999). Its biocidal mode of action includes the reduction 
of gram-positive and gram-negative bacteria, yeasts, molds, protozoa and viruses 
(Axelsson et al., 1989; Casas and Dobrogosz, 2000). 

In the available literature there is information concerning the biocidal effects of 
β-defensin on Salmonella enterica serovar typhimurium and Clostridium perfrin-
gens. The latter is responsible for the pathogenesis of necrotic enteritis in poultry 
annually generating the greatest financial losses globally (2 billion USD) (Van Im-
merseel et al., 2009). In the case of chickens gallinacin-6 (AvBD9) plays an important 
role in the bird’s innate immunity to the pathogens of the gastrointestinal tract (van 
Dijk et al., 2007). The research of the team Hong et al. (2012) suggests that the crop 
can perform the function of local expression of β-defensins (AvBD1, 7, 9) towards 
Eimeria maxima and C. perfringens. However, further research is needed for a de-
tailed understanding of the host-pathogen relationship in this aspect.

	
The immunological function of the crop
The composition of the specific immune system of birds includes primary lym-

phoid tissues, i.e. the thymus and bursa of Fabricius. The secondary, peripheral tis-
sues include, among others, the spleen (Gallego et al., 1993), Harderian gland (Olah 
et al., 1996), esophageal and glandular stomach tonsils (Matsumoto and Hashimoto, 
2000), Peyer’s patches (Befus et al., 1980), Meckel’s diverticulum (Olah et al., 1984) 
and lymphoid follicles in the cecum (Olah and Glick, 1979), as well as lymphoid tis-
sues of the gastrointestinal tract, i.e. GALT (gut-associated lymphoid tissue) (Glick 
and Olah, 1981) and BALT (bronchial-associated lymphoid tissue) (Figure 3) (Bi-
enenstock and McDermott, 2005). Furthermore, studies by Holt et al. (2006) clearly 
indicate the possibility of immunological response of the crop in the presence of 
Salmonella enterica serovar Enteritidis (strain SE89-8312). The experiment was 
carried out with White Leghorn line raised gnobiotically (specific pathogen free). 
During infection of chickens (1 ml per os, 9×106 S. enteritidis), an increase of IgA 
specific for the used pathogen in the crop was observed. At the same time, there was 
the presence of lymphoid aggregates within the lamina propria of mucous membrane 
of the crop (Holt et al., 2002). In many cases it was shown that immunoglobulins 
A have an inhibiting effect towards bacteria present in the gastrointestinal tract of 
animals (Michetti et al., 1992; Iankov et al., 2002). Moreover, they are defined as the 
first line of immunological defense by limiting the adhesion of pathogens to the mu-
cosal epithelium and its penetration (Michetti et al., 1994). In the lymphoid tissue of 
the crop, plasma cells and lymphocytes-B were also isolated. So, the local humoral 
immunity located in the crop may constitute a specific diagnostic indicator used to 
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detect disease of the gastrointestinal tract of chickens (Seo et al., 2003). Simultane-
ously, it is a cheap method, non-invasive and simple in execution (Vaughn, 2007, 
Ph.D. dissertation).

Conclusions
In conclusion, feed storage is a basic and direct role of the crop. However, from 

the point of view of productivity and the health of birds, the most important func-
tions of this organ are: feed moistening and creating a favorable environment for the 
development of probiotic microbiota. Indirectly, the crop is involved in the suppres-
sion of potentially pathogenic bacteria and reduces contamination of further sections 
of the gastrointestinal tract by substances with antimicrobial properties and those 
regulating the digesta pH. However, the composition of the microbial populations 
of the crop may change under the influence of dietary factors (Knarreborg et al., 
2002; Hammons et al., 2010), age (Hilmi et al., 2007), antibiotics (Knarreborg et al., 
2002) and other feed additives (Józefiak et al., 2011; Józefiak et al., 2012; Ptak et al., 
2015) supplementation or infection (Kimura et al., 1976). Therefore, it is necessary 
to better understand the different processes occurring in the crop in order to use it as 
efficiently in poultry production.
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