5. MMP-2, TIMP-2, TAZ and MEF2a Transcript Expression in Osteogenic and Adipogenic Differentiation of Porcine Mesenchymal Stem Cells

Open access

Abstract

Mesenchymal stem cell (MSC) differentiation is regulated intrinsically by transcription factors and extrinsically by the extracellular matrix. We tested whether matrix metalloproteinase-2 (MMP-2) and its inhibitor TIMP-2, MEF2a and TAZ transcription factors are involved in porcine MSC differentiation towards adipocytes and osteocytes. Flow cytometry and immunofluorescence were used to investigate the expression levels of multipotent cell surface markers CD73 and CD105. Real- time PCR was performed to detect the osteogenic- and adipogenic-specific markers, osteocalcin and aP2, respectively, and to estimate the MMP-2, TIMP-2, MEF2a and TAZ transcript expression levels in three groups of cell, i.e., undifferentiated MSCs, adipocytes (A) and osteocytes (O). We showed that at the transcript level, the differentiation of MSCs towards adipocyte fate may involve MMP-2, TIMP-2 and TAZ. We also show that the differentiation of MSCs toward osteocyte fate may involve TIMP-2, MEF2a and TAZ. Our research provides preliminary data on the possible role of the MMP-2, TIMP-2 and TAZ transcripts in adipogenic differentiation and of the TIMP-2, TAZ and MEF2a transcripts in the osteogenic differentiation of porcine MSCs. We report for the first time the possible involvement of MEF2a in the osteogenesis of porcine MSCs. Our work may provide additional evidence for the MMP-independent function of TIMP-2 during osteogenesis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arnold M.A. Kim Y. Czubryt M.P. Phan D. Mc Anally J. Qi X. Shelton J.M. Richardson J.A. Bassel-Duby R. Olson E.N. (2007). MEF2Ctranscription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12: 377-389.

  • Boxall S.A. Jones E. (2012). Markers for characterization of bone marrow multipotential stromal cells. Stem Cells Int. 2012: 975871.

  • Brew K. Dinakarpandian D. Nagase H. (2000). Tissue inhibitors of metalloproteinases: evolution structure and function. Biochim. Biophys. Acta 1477: 267-283.

  • Chang S.C. Chuang H. Chen Y.R. Yang L.C. Chen J.K. Mardini S.Chung H.Y. Lu Y.L. Ma W.C. Lou J. (2004 a). Cranial repair using BMP-2 gene engineered bone marrow stromal cells. J. Surg. Res. 119: 85-91.

  • Chang S. Mc Kinsey T.A. Zhang C.L. Richardson J.A. Hill J.A. Olson E.N.(2004 b). Histone deacetylases 5 and 9 govern responsiveness of the heart toasubset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24: 8467-8476.

  • Chang S. Young B.D. Li S. Qi X. Richardson J.A. Olson E.N. (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126: 321-334.

  • Chen Y.H. Yeh F.L. Yeh S.P. Ma H.T. Hung S.C. Hung M.C. Li L.Y. (2011). Myocyte enhancer factor-2 interacting transcriptional repressor MITR isaswitch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferatoractivated receptorγ-2. J. Biol. Chem. 286: 10671-10680.

  • Cho H.H. Shin K.K. Kim Y.J. Song J.S. Kim J.M. Bae Y.C. Kim C.D. Jung J.S. (2010). NF-kappa Bactivation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZexpression. J. Cell. Physiol. 223: 168-177.

  • Chomczynski P. (1993). Areagent for the single-step simultaneous isolation of RNA DNAand proteins from cell and tissue samples. Biotechniques 15: 532-537.

  • Cronwright G. Le Blanc K. Götherström C. Darcy P. Ehnman M. Brodin B. (2005). Cancer/testis antigen expression in human mesenchymal stem cells: Down-regulation of SSXimpairs cell migration and matrix metalloproteinase 2 expression. Cancer Res. 65: 2207-2215.

  • D’Amour K.A. Bang A.G. Eliazer S. Kelly O.G. Agulnick A.D. Smart N.G. Moorman M.A. Kroon E. Carpenter M.K. Baetge E.E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24: 1392-1401.

  • Daley W.P. Peters S.R. Larsen M. (2008). Extracellular matrix dynamics in development and regenerative medicine. J. Cell. Sci. 121: 255-264.

  • De Becker A. Van Hummelen P. Bakkus M. Vande Broek I. De Wever J. De Waele M. Van Riet I. (2007). Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica 92: 440-449.

  • Dominici M. Le Blanc K. Mueller I. Slaper-Cortenbach I. Marini F. Krau - se D. Deans R. Keating A. Prockop D.J. Horwitz E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-317.

  • Ezzelarab M. Ezzelarab C. Wilhite T. Kumar G. Hara H. Ayares D. Coop - er D.K. (2011). Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses. Xenotransplantation 18: 183-195.

  • Gonzalez-Rey E. Anderson P. Gonzalez M.A. Rico L. Büscher D. Delgado M. (2009). Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58: 929-939.

  • Hayashi M. Kim S.W. Imanaka- Yoshida K. Yoshida T. Abel E.D. Eliceiri B. Yang Y. Ulevitch R.J. Lee J.D. (2004). Targeted deletion of BMK1/ERK5 in adult mice perturbs vascular integrity and leads to endothelial failure. J. Clin. Invest. 113: 1138-1148.

  • Hong J.H. Hwang E.S. Mc Manus M.T. Amsterdam A. Tian Y. Kalmukova R. Mueller E. Benjamin T. Spiegelman B.M. Sharp P.A. Hopkins N. Yaf- fe M.B. (2005). TAZatranscriptional modulator of mesenchymal stem cell differentiation. Science 12: 1074-1078.

  • Hong D. Chen H.X. Xue Y. Li D.M. Wan X.C. Ge R. Li J.C. (2009). Osteoblastogenic effects of dexamethasone through upregulation of TAZexpression in rat mesenchymal stem cells. J. Steroid. Biochem. Mol. Biol. 116: 86-92.

  • Hoshiba T. Kawazoe N. Chen G. (2012). The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials 33: 2025-2031.

  • Hu E. Tontonoz P. Spiegelman B.M. (1995). Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγand C/EBPα. Proc. Nat. Acad. Sci. USA. 92: 9856- -9860.

  • Itakura S. Asari S. Rawson J. Ito T. Todorov I. Liu C.P. Sasaki N. Kandeel F.Mullen Y. (2007). Mesenchymal stem cells facilitate the induction of mixed hematopoietic chimerism and islet allograft tolerance without GVHDin the rat. Am. J. Transplant. 7: 336-346.

  • Jackson K.A. Majka S.M. Wang H. Pocius J. Hartley C.J. Majesky M.W. Ent- man M.L. Michael L.H. Hirschi K.K. Goodell M.A. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107: 1395-1402.

  • Kasper G. Glaeser J.D. Geissler S. Ode A. Tuischer J. Matziolis G. Perka C. Duda G.N. (2007). Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 25: 1985-1994.

  • Kolf C.M. Cho E. Tuan R.S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche self-renewal and differentiation. Arthritis Res. Ther. 9: 204.

  • Komori T. Yagi H. Nomura S. Yamaguchi A. Sasaki K. Deguchi K. Shimi- zu Y. Bronson R.T. Gao Y.H. Inada M. Sato M. Okamoto R. Kitamura Y. Yoshiki S. Kishimoto T. (1997). Targeted disruption of Cbfa1 results inacomplete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755-764.

  • Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

  • Lecka- Czernik B. Moerman E.J. Grant D.F. Lehmann J.M. Manolagas S.C. Jil- ka R.L. (2002). Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation. Endocrinology 143: 2376-2384.

  • Li B. Shi M. Li J. Zhang H. Chen B. Chen L. Gao W. Giuliani N. Zhao R.C. (2007). Elevated tumor necrosis factor-alpha suppresses TAZexpression and impairs osteogenic potential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev. 16: 921-930.

  • Li J. Ezzelarab M.B. Cooper D.K.C. (2012). Do mesenchymal stem cells function across species barriers? Relevance for xenotransplantation. Xenotransplantation 19: 273-285.

  • Lin F. Cordes K. Li L. Hood L. Couser W.G. Shankland S.J. Igarashi P. (2003). Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J. Am. Soc. Nephrol. 14: 1188-1199.

  • Lipka D. Boratyński J. (2008). Metalloproteinases. Structure and function (in Polish). Adv. Hyg. Exp. Med. 62: 328-336.

  • Lisignoli G. Cristino S. Piacentini A. Cavallo C. Caplan A.I. Facchini A. (2006). Hyaluronan-based polymer scaffold modulates the expression of inflammatory and degradative factors in mesenchymal stem cells: Involvement of CD44 and CD54. J. Cell. Physiol. 207: 364 -373.

  • Lovelock J.D. Baker A.H. Gao F. Dong J.F. Bergeron A.L. Mc Pheat W. Sivasu - bramanian N. Mann D.L. (2005). Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am. J. Physiol. Heart. Circ. Physiol. 288: H461-468.

  • Łukaszewicz M. Mroczko B. Szmitkowski M. (2008). The role of metalloproteinases and their inhibitors in pancreatic cancer (in Polish). Adv. Hyg. Exp. Med. 62: 141-147.

  • Mannello F. (2006). Multipotent mesenchymal stromal cell recruitment migration and differentiation: what have matrix metalloproteinases got to do with it? Stem Cells 24: 1904-1907.

  • Mannello F. Tonti G.A. Papa S. (2006). Role and function of matrix metalloproteinases in the differentiation and biological characterization of mesenchymal stem cells. Stem Cells 24: 475- 481.

  • Mao J.J. Marion N.W. (2009). Tissues engineering using mesenchymal stem cells. In: Essential Stem Cell Methods Lanza R. Klimanskaya I. (eds.). Elsevier Oxford pp. 297-313.

  • Miller C.T. Swartz M.E. Khuu P.A. Walker M.B. Eberhart J.K. Kimmel C.B. (2007). Mef2ca is required in cranial neural crest to effect Endothelin1 signaling in zebrafish. Dev. Biol. 308: 144-157.

  • Naya F.J. Black B.L. Wu H. Bassel-Duby R. Richardson J.A. Hill J.A. Ol - son E.N. (2002). Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat. Med. 8: 1303-1309.

  • Opiela J. Samiec M. (2013). Characterization of mesenchymal stem cells and their application in experimental embryology. Pol. J. Vet. Sci. 16: 593-599.

  • Opiela J. Bartel Ż. Romanek J. Wieczorek J. Wilczek P. (2013 a). The quality ofporcine mesenchymal stem cells and their osteo- and adipogenic cell derivatives - the level of proapoptotic BADprotein expression. Ann. Anim. Sci. 13: 753-763.

  • Opiela J. Samiec M. Bochenek M. Lipiński D. Romanek J. Wilczek P. (2013 b). DNAaneuploidy in porcine bone marrow-derived mesenchymal stem cells undergoing osteogenic and adipogenic in vitro differentiation. Cell. Rep. 15: 425-434.

  • Page-Mc Caw A. Ewald A.J. Werb Z. (2007). Matrix metalloproteinases and the regulation of tissue remodeling. Nat. Rev. Mol. Cell Biol. 8: 221-233.

  • Panepucci R.A. Siufi J.L. Silva W.A. Jr. Proto- Siquiera R. Neder L. Orella - na M. Rocha V. Covas D.T. Zago M.A. (2004). Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22: 1263-1278.

  • Philip D. Chen S.S. Fitzgerald W. Orenstein J. Margolis L. Kleinman H.K. (2005). Complex extracellular matrices promote tissue-specific stem cell differentiation. Stem Cells 23: 288-296.

  • Potthoff M.J. Olson E.N. (2007). MEF2:acentral regulator of diverse developmental programs. Development 134: 4131-4140.

  • Prockop D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71-74.

  • Rho G.J. Kumar B.M. Balasubramanian S.S. (2009). Porcine mesenchymal stem cells - current technological status and future perspective. Front Biosci. 14: 3942-3961.

  • Rosen E.D. Sarraf P. Troy A.E. Bradwin G. Moore K. Milstone D.S. Spiegel- man B.M. Mortensen R.M. (1999). PPARgamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4: 611-617.

  • Rosland G.V. Svendsen A. Torsvik A. Sobala E. Mc Cormack E. Immervoll H. Mysliwietz J. Tonn J.C. Goldbrunner R. Lønning P.E. Bjerkvig R. Schichor C. (2009). Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 69: 5331-5339.

  • Scheideler M. Elabd C. Zaragosi L.E. Chiellini C. Hackl H. Sanchez- Cabo F. Yadav S. Duszka K. Friedl G. Papak C. Prokesch A. Windhager R. Ail- haud G. Dani C. Amri E.Z. Trajanoski Z. (2008). Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 9: 340.

  • Shalizi A. Gaudilliere B. Yuan Z. Stegmuller J. Shirogane T. Ge Q. Tan Y. Schulman B. Harper J.W. Bonni A. (2006). Acalcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311: 1012-1017.

  • Shen H. Mc Elhinny A.S. Cao Y. Gao P. Liu J. Bronson R. Griffin J.D. Wu L. (2006). The Notch coactivator MAML1 functions asanovel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev. 20: 675-688.

  • Shore P. Sharrocks A.D. (1995). The MADS-box family of transcription factors. Eur. J. Biochem. 229: 1-13.

  • Son B.R. Marquez- Curtis L.A. Kucia M. Wysoczyński M. Turner A.R. Rataj- czak J. Ratajczak M.Z. Janowska-Wieczorek A. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24: 1254-1264.

  • Takada I. Kouzmenko A.P. Kato S. (2010). PPAR-γsignaling crosstalk in mesenchymal stem cells. PPAR Res. 2010: 341671.

  • Takada I. Yogiashi Y. Kato S. (2012). Signaling crosstalk between PPARγand BMP2 in mesenchymal stem cells. PPAR Res. 2012: 607141.

  • Vanhoutte D. Heymans S. (2010). TIMPs and cardiac remodeling: 'Embracing the MMP-independent- side of the family'. J. Mol. Cell Cardiol. 48: 445-453.

  • Verzi M.P. Agarwal P. Brown C. Mc Culley D.J. Schwarz J.J. Black B.L. (2007). The transcription factor MEF2Cis required for craniofacial development. Dev. Cell 12: 645-652.

  • Visse R. Nagase H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure function and biochemistry. Circ. Res. 92: 827-839.

  • Vu T.H. Werb Z. (2000). Matrix metalloproteinases: Effectors of development and normal physiology. Genes Dev. 14: 2123-2133.

  • Wang D.Z. Valdez M.R. Mc Anally J. Richardson J. Olson E.N. (2001). The Mef2c gene isadirect transcriptional target of myogenic b HLHand MEF2 proteins during skeletal muscle development. Development 128: 4623-4633.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1.246

CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 357 201 14
PDF Downloads 132 87 4