Nanoparticles as a Tool for Transfection and Transgenesis – a Review

  • 1 Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, 32-083 Balice n. Kraków, Poland

Abstract

Nanoparticles can be an alternative for currently used viral and non-viral systems of transporting exogenous DNA into cells, and furthermore, can be an effective way to produce transgenic animals. The possibility of linking them with proteins, lipids and of adding ligands enables improved transfection by making the crossing of membranes and the breaking of the endosomal barrier more efficient. Additionally, by the addition of magnetic particles it is possible to amend the intracellular kinetics of nanoparticle-DNA complexes. This review considers the use of nanoparticles to transfect cells and embryos and their possible application as a non-viral vector in animal transgenesis.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmad A., Ranjan S., Zhang W., Zou J., Pyykkö I., Kinnunen P. (2015). Novel endosomolytic peptides for enhancing gene delivery in nanoparticles. Biochim. Biophys., 1848: 544-553.

  • An H., Jin B. (2012). Prospects of nanoparticle-DNAbinding and its implications in medical biotechnology. Biotechnol. Adv., 30: 1721-1732.

  • Austin L., Mackey M., Dreaden E., El-Sayed M. (2014). The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 88: 1391-1417.

  • Bahrami A., Raatz M., Agudo- Canalejo J., Michel R., Curtis E., Hall C., Gradzielski M., Lipowsky R., Weikl T. (2014). Wrapping of nanoparticles by membranes. Adv. Colloid Interface Sci., 208: 214-224.

  • Barkalina N., Charalambous C., Jones C., Coward K. (2014). Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. Nanomedicine, 10: 921-938.

  • Barkalina N., Jones C., Wood M., Coward K. (2015). Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature. Hum. Reprod. Update, 21: 627-639.

  • Bosman S., Nieto S., Patton W., Jacobson J., Corselli J., Chan P. (2005). Development of mammalian embryos exposed to mixed-size nanoparticles. Clin. Exp. Obstet. Gynecol., 32: 222-224.

  • Breunig M., Lungwitz U., Liebl R., Goepferich A. (2007). Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proc. Natl. Acad. Sci. USA, 104: 14454-14459.

  • Campos V.,de Leon P., Komninou E., Dellagostin O., Deschamps J., Seixas F., Collares T. (2011). Nano SMGT: Transgene transmission into bovine embryos using hallosite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology, 76: 1552-1560.

  • Caracciolo G., Pozzi D., Capriotti A., Marianecci C., Carafa M., Marchini C., Montani M., Amici A., Amenitsch H., Digman M., Gratton E., Sanchez S., Lagana A. (2011). Factors determining the superior performance of lipid/DNA/protamine nanoparticles over lipoplexes. J. Med. Chem., 54: 4160-4171.

  • Carmona- Ribeiro A. (2010). Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int. J. Nanomedicine, 5: 249-259.

  • Cortesi R., Campioni M., Ravani L., Drechsler M., Pinotti M., Esposito E. (2014). Cationic lipid nanosystems as carriers for nucleic acids. N. Biotechnol., 31: 44-54.

  • Delgado D.,de Pozo-Rodriguez A., Solinis M., Rodriguez- Gascon A. (2011). Understanding the mechanism of protamine in solid lipid nanoparticle based lipofection: the importance of the entry pathway. Eur. J. Pharm. Biopharm., 79: 495-502.

  • Eghbalsaied S., Ghaedi K., Laible G., Hosseini S., Forouzanfar M., Hajian M., Oback F., Nasr-Esfahani M., Oback B. (2013). Exposure to DNAis insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction, 145: 97-108.

  • Ekser B., Klein E., He J., Stolz D., Echeverri G., Long C., Lin C., Ezzelarab M., Hara H., Veroux M., Ayares D., Cooper D.K., Gridelli B. (2012). Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs. PLo S One, 7: e29720.

  • Ema M., Kobayashi N., Naya M., Hanai S., Nakanishi J. (2010). Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod. Toxicol., 30: 343-352.

  • Gandolfi F. (2000). Sperm-mediated transgenesis. Theriogenology, 53: 127-137.

  • Gemeinhart R., Luo D., Saltzman W. (2005). Cellular fate ofamodular DNAdelivery system mediated by silica nanoparticles. Biotechnol. Prog., 21: 532-537.

  • Ghosh P., Han G., De M., Kim C., Rotello V. (2008). Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev., 60: 1307-1315.

  • Golovan S., Meidinger R., Ajakaiye A., Cottrill M., Wiederkehr M., Barney D., Plante C., Pollard J., Fan M., Hayes M., Laursen J., Hjorth J., Hacker R., Phil - lips J., Forsberg C. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nat. Biotechnol., 19: 741-745.

  • Green J., Zhou B., Mitalipova M., Beard C., Langer R., Jaenisch R., Anderson D. (2008). Nanoparticles for gene transfer to human embryonic stem cell colonies. Nano Lett., 8: 3126-3130.

  • Grześkowiak B., Sánchez- Antequera Y., Hammerschmid E., Döblinger M., Eberbeck D., Woźniak A., Słomski R., Plank C., Mykhaylyk O. (2015). Nanomagnetic activation asaway to control the efficacy of nucleic acid delivery. Pharm. Res., 32: 103-121.

  • Hammer R., Pursel V., Rexroad C. Jr, Wall R., Bolt D., Ebert K., Palmiter R., Brin - ster R. (1986). Production of transgenic rabbits, sheep and pigs by microinjection. J. Anim. Sci., 63: 269-278.

  • Hart S. (2010). Multifunctional nanocomplexes for gene transfer and gene theraphy. Cell Biol. Toxicol., 26: 69-81.

  • Houdebine L. (2009). Production of pharmaceutical proteins by transgenic animals. Comp. Immunol. Microbiol. Infec. Dis., 32: 107-121.

  • Huang J., Liu Ch., Yen K., Kang P., Sadhasivam S., Lin F. (2012). Cholaminchloride hydrochloride-cationized gelatin/calcium phosphate nanoparticles as gene carriers for transgenic chicken production. Process Biochem., 47: 1919-1925.

  • Jiang Z., Sun C., Yin Z., Zhou F., Ge L., Liu X., Kong F. (2012). Comparison of two kinds of nanomedicine for targeted gene therapy: premodified or postmodified gene delivery systems. Int. J. Nanomedicine, 7: 2019-2031.

  • Jura J., Smorąg Z., Słomski R., Lipiński D., Gajda B. (2007). Factors affecting the production of potential transgenic pigs by DNAmicroinjection;asix-year retrospective study. J. Anim. Feed Sci., 12: 636-645.

  • Kami D., Takeda S., Itakura Y., Watanabe M., Toyoda M. (2011). Application of magnetic nanoparticles to gene delivery. Int. J. Mol. Sci., 12: 3705-3722.

  • Kang L., Gao Z., Huang W., Jin M., Wang Q. (2015). Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharma. Sin. B, 5: 169-175.

  • Keefer C. (2004). Production of bioproducts through the use of transgenic animal models. Anim. Reprod. Sci., 82-83: 5-12.

  • Laible G. (2009). Enhancing livestock through genetic engineering - recent advances and future prospects. Comp. Immunol. Microbiol. Infec. Dis., 32: 123-137.

  • Laible G., Wei J., Wagner S. (2015). Improving livestock for agriculture - technological progress from random transgenesis to precision genome editing heraldsanew era. Biotechnol. J., 10: 109-120.

  • Li Y., Wen G., Wang D., Zhang X., Lu Y., Wang J., Zhong L., Cai H., Zhang X., Wang Y. (2014). Acomplementary strategy for enhancement of nanoparticle intracellular uptake. Pharm. Res., 31: 2054-2064.

  • Lipiński D., Zeyland J., Szalata M., Plawski A., Jarmuz M., Jura J., Korcz A., Smorąg Z., Peinkowski M., Słomski R. (2012). Expression of human growth hormone in the milk of transgenic rabbits with transgene mapped to the telomere region of chromosome 7q. J. Appl. Genet., 53: 435-442.

  • Maga E., Murray J. (2010). Welfare applications of genetically engineered animals for use in agriculture. J. Anim Sci., 88: 1588-1591.

  • Marshall K., Hurley W., Shanks R., Wheeler M. (2006). Effects of suckling intensity on milk yield and piglet growth from lactation-enhanced gilts. J. Anim. Sci., 84: 2346-2351.

  • McBain S., Yiu H., Dobson J. (2008). Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomedicine, 3: 169-180.

  • Moura R., Melo L., Freitas V. (2011). Production of recombinant proteins in milk of transgenic and non-transgenic goats. Braz. Arch. Biol. Techn., 54: 927-938.

  • Nam Y., Maclean N., Hwang G., Kim D. (2013). Autotransgenic and allotransgenic manipulation of growth traits in fish for aquaculture: Areview. J. Fish Biol., 72: 1-26

  • Nel A., Xia T., Mandler L., Li N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622-627.

  • Nitta S., Numata K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 14: 1629-1654.

  • Perrier V., Kaneko K., Safar J., Vergara J., Tremblay P., De Armond S., Cohen F.,Prusiner S., Wallace A. (2002). Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA, 99: 13079-13084.

  • Pfeifer A., Zimmermann K., Plank C. (2012). Magnetic nanoparticles for biomedical applications. Pharm. Res., 29: 1161-1164.

  • Plank C., Schillinger U., Scherer F., Bergemann C., Remy J., Krotz F., Anto n M., Lausier J., Rosenecker J. (2003). The magnetofection method: using magnetic force to enhance gene delivery. Biol. Chem., 384: 737-747.

  • Pozzi D., Marchini C., Cardarelli F., Salomone F., Coppola S., Montani M., Za - baleta M., Digman M., Gratton E., Colapicchioni V., Caracciolo G. (2014). Mechanistic evaluation of the transfection barriers involved in lipid-mediated gene delivery: interplay between nanostructure and composition. Biochim. Biophys. Acta, 1838: 957-967.

  • Prabha S., Zhou W., Panyam J., Labhasetwar V. (2002). Size-dependency of nanoparticlemediated gene transfection: studies with fractionated nanoparticles. Int. J. Pharm., 244: 105-115.

  • Rothschild M., Plastow G. (2014). Applications of genomics to improve livestock in the developing world. Livest. Sci., 166: 76-83.

  • Sauer U., Aumann A., Ma-Hock L., Landsiedel R., Wohlleben W. (2015). Influence of dispersive agent on nanomaterial agglomeration and implications for biological effects in vivo or in vitro. Toxicol. In Vitro, 29: 182-186.

  • Severino P., Szymanski M., Favaro M., Azzoni A., Chaud M., Santana M., Sil- va A., Souto E. (2015). Development and characterization of cationic lipid nanocarrier as nonviral vector for gene delivery. Eur. J. Pharm. Sci., 66: 78-82.

  • Slowing I., Vivero-Escoto J., Wu C., Lin V. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 60: 1278-1288.

  • Smith K., Corrado S. (2005). Sperm-mediated transfer: applications and implications. Bio Essays, 27: 551-562.

  • Smorąg Z., Słomski R., Cierpka L. (2013). Biotechnological and medical aspects of xenotransplantation (in Polish). Ośrodek Wydawnictw Naukowych PAN, Poznań, 2nd ed., pp. 73-93.

  • Song G., Han J. (2011). Avian biomodels for use as pharmaceutical bioreactors and for studying human diseases. Ann. NY Acad. Sci., 1229: 69-75.

  • Svenson S., Prud’homme R. (2012). Multifunctional nanoparticles for drug delivery applications: imaging, targeting, and delivery. Nanostructure Science and Technology. Springer Science+ Business Media, LLC Springer-Verlag, New York, USA, pp. 9-29.

  • Tabatt K., Kneuer C., Sametti M., Olbrich K., Muller R., Lehr C., Bakowsky U. (2004). Transfection with different colloidal systems: comparison of solid lipid nanoparticles and liposomes. J. Control. Release, 97: 321-332.

  • Taylor U., Garrels W., Barchanski A., Peterson S., Sajti L., Lucas- Hahn A., Gamrad L., Baulain U., Klein S., Kues W., Barcikowski S., Rath D. (2014). Injection of ligand-free gold and silver nanoparticles into murine embryos does not impact preimplantation development. Beilstein J. Nanotechnol., 5: 677-688.

  • Taylor U., Tiedemann D., Rehbock C., Kues W., Barcikowski S., Rath D. (2015). Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development. Beilstein J. Nanotechnol., 6: 651-664.

  • Verma V., Gautam S., Palta P., Manik R., Singla S., Chauhan M. (2008). Development ofapronuclear DNAmicroinjection technique for production of green fluorescent protein-expressing bubaline (Bubalus bubalis) embryos. Theriogenology, 69: 655-665.

  • Wang Y., Zhao S., Bai L., Fan J., Liu E. (2013). Expression system and species used for transgenic animal bioreactors. Bio. Med. Res. Int., 2013: 580463.

  • Wang J., Yao H., Shi X. (2014 a). Cooperative entry of nanoparticles into the cell. J. Mech. Phys. Solids, 73: 151-165.

  • Wang Y., Cui H., Sun C., Du W., Zhao X., Chen W. (2014 b). Amagnetic nanoparticle-based multiple-gene delivery system for transfection of porcine kidney cells. PLo S One, 9(7):e102886.

  • Wang Y., Zhao Q., Han N., Bai L., Li J., Liu J., Che E., Hu L., Zhang Q., Jiang T., Wang S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine, 11: 31 3-327.

  • Ward K. (2000). Transgene-mediated modifications to animal biochemistry. Trends Biotechnol., 18: 99-102.

  • Whitelaw C., Lilico S., King T. (2008). Production of transgenic farm animals by viral vectormediated gene transfer. Reprod. Domest. Anim., 43(suppl.2): 355-358.

  • Yoisungnern T., Choi Y., Han J., Kang M., Das J., Gurunathan S., Kwon D., Cho S., Park C., Chang W., Chang B., Parnpai R., Kim J. (2015). Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci. Rep., 5: 11170.

  • Zanin H., Hollanda L., Ceragioli H., Ferreira M., Machado D., Lancellotti M., Catharino R., Baranauskas V., Lobo A. (2014). Carbon nanoparticles for gene transfection in eukaryotic cell lines. Mater Sci. Eng. C Mater Biol. Appl., 39: 359-370.

  • Zhou X., Laroche F., Lemers G., Torraca V., Voscamp P., Lu T., Chu F., Spaik H., Abrahms J., Liu Z. (2012). Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos. Nano Res., 5: 703-709.

OPEN ACCESS

Journal + Issues

Search