Influence of Protein Supply on Threonine Efficiency and Threonine Catabolism in Hepatic Mitochondria of Chicks and Rats

Chul Won Lee 1 , Rongjie Zhao 2 , Il Je Cho 3 , Sung Hui Byun 3 , Young Woo Kim 3 , Youn Sook Kim 4 , Sang Chan Kim 3  and Won G. An 1 , 5
  • 1 Institute of BioTechnology, Pusan National University, Busan, 609-735, Korea
  • 2 Department of Pharmacology, Jining Medical University, Jining 272067, China
  • 3 College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea
  • 4 School of Medicine, Pusan National University, Yangsan 626-870, Korea
  • 5 Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan, 626-870, Korea

Abstract

This research investigated the relationship between efficiency of threonine (Thr) utilization and Thr oxidation in hepatic mitochondria in chicks and rats fed with graded levels (5.5-33.0% CP for chicks, 6-24% CP for rats) of protein. Calculation of efficiency of Thr utilization was based on N-balance data and an exponential N-utilization model, and Thr dehydrogenase (TDG) activity was determined. According to the results, no significant effect on TDG activity was observed in the liver of chicks who received diets containing from 5.5 up to 16.5% CP. However, significantly elevated TDG activities were observed, despite limited supply of Thr in protein, with diets containing from 22.0 up to 33.0% CP. At the levels of CP content from 5.5 up to 27.5%, no significant change in efficiencies of Thr utilization was observed. However, a significant decrease in efficiency was observed with diets containing from 27.5 to 33.0% CP. In chicks, the relationship between oxidation of Thr and Thr efficiency was observed with graded CP levels. In addition, elevated TDG activities in rat liver were observed with diets containing from 6.0 to 12.0% CP. At the levels of CP content from 6.0 up to 24.0%, no significant effect on efficiency of Thr utilization was observed in rats. In addition, no relationship was observed between Thr oxidation and efficiency of Thr utilization with graded CP levels in rats. Taken together, reactions for TDG appear to be animal species-dependent.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ayasan T., Okan F. (2010). Effects of diets containing different levels of threonine and lysine aminoacids on fattening performance of broiler chicks. J. Faculty Agric. Suleyman Demirel Univ., 5: 36-43.

  • Ayasan T., Okan F., Hizli H. (2009). Threonine requirement of broilers from 22 to 42 days. Int. J. Poultry Sci., 8: 862-865.

  • Ballèvre O., Cadenhead A., Calder A.G., Rees W.D., Lobley G.E., Fuller M.F., Gar- lick P.J. (1990). Quantitative partition of threonine oxidation in pigs, effect of dietary threonine. Am. J. Physiol., 259: E483-491.

  • Baylan M., Canogullari S., Ayasan T., Sahin A. (2006). Dietary threonine supplementation for improving growth performance and edible carcass parts in Japanese quails, Coturnix coturnix japonica. Int. J. Poultry Sci., 5: 635-638.

  • Benevenga N.J., Gahl M.J., Blemings K.P. (1993). Role of protein synthesis in amino acid catabolism. J. Nutr., 123: 332-336.

  • Berthold K., Olivier G., Joanne H., Kathrin K., Raanan S. (2005). 3. Amino acids. J. Pediatr. Gastroenterol. Nutr., 41: S12-S18.

  • Bird M.I., Nunn P.B. (1983). Metabolic homoeostasis of L-threonine in the normally-fed rat. Biochem. J., 214: 687-694.

  • Bird M.I., Nunn P.B., Lord L.A.J. (1984). Formation of glycine and aminoacetone from L-threonine by rat liver mitochondria. Biochem. Biophys. Acta., 802: 229-236.

  • Bregendahl K., Sell J.L., Zimmerman D.R. (2002). The effect of low-protein diets on growth performance and body composition of broiler chicks. Poultry Sci., 81: 1156-1167.

  • Canogullari S., Baylan M., Ayasan T. (2009). Threonine requirement of laying Japanese quails. J. Anim. Vet. Adv., 8: 1539-1541.

  • Davis A.J., Austic R.E. (1994). Dietary threonine imbalance alters threonine dehydrogenase activity in isolated hepatic mitochondria of chicks and rats. J. Nutr., 124: 1667-1677.

  • Davis A.J., Austic R.E. (1997). Dietary protein and amino acid levels alter threonine dehydrogenase activity in hepatic mitochondria of Gallus domesticus. J. Nutr., 127: 738-744.

  • Han Y.K., Thacker P.A. (2011). Influence of energy level and glycine supplementation on performance, nutrient digestibility and egg quality in laying hens. Asian-Aust. J. Anim. Sci., 24: 1447-1455.

  • Ishikawa K., Higashi N., Nakamura T., Matsuura T., Nakagawa A. (2007). The first crystal structure of L-threonine dehydrogenase. J. Mol. Biol., 366: 857-867.

  • Jiang Q., Waldroup P.W., Fritts C.A. (2005). Improving the utilization of diets low in crude protein for broiler chickens. 1. Evaluation of special amino acid supplementation to diets low in crude protein. Int. J. Poultry Sci., 4: 115-122.

  • Kerr B.J., Kidd M.T. (1999). Amino acid supplementation of low-protein broiler diets: 1. Glutamic acid and indispensable amino acid supplementation. J. Appl. Poultry Res., 8: 298-309.

  • Lee C.W., Oh Y.J., Son Y.S., An W.G. (2011). Effects of dietary protein and threonine supply on in vitro liver threonine dehydrogenase activity and threonine efficiency in rat and chicken. Asian-Aust. J. Anim. Sci., 24: 1417-1424.

  • Lee C.W., Cho I.J., Lee Y.J., Son Y.S., Kwak I., Ahn Y.T., Kim S.C., An W.G. (2014). Effects of dietary levels of glycine, threonine and protein on threonine efficiency and threonine dehydrogenase activity in hepatic mitochondria of chicks. Asian-Aust. J. Anim. Sci., 27: 69-76.

  • Le Floc’h N., Obled C., Sève B. (1996). In vivo threonine oxidation in growing pigs fed on diets with graded levels of threonine. Br. J. Nutr., 75: 825-837.

  • Levesque C.L., Moehn S., Pencharz P.B., Ball R.O. (2011). The threonine requirement of sows increases in late gestation. J. Anim. Sci., 89: 93-102.

  • Liebert F. (1995). Methodische Untersuchungen zur Beurteilung von Lysinverwertungskennzahlen von Schweinen nach extremen Veränderungen von Proteinmenge und -zusammensetzung. Arch. Anim. Nutr., 48: 319-327.

  • Mercer L.P., May H.E., Dodds S.J. (1989). The determination of nutritional requirements in rats: Mathematical modeling of sigmoidal, inhibited nutrient-response curves. J. Nutr., 119: 1465-1471.

  • NRC (1978). Nutrient requirements of laboratory animals. 3rd rev. ed. Natl. Acad. Press, Washington, DC.

  • NRC (1994). Nutrient requirements of poultry. 9th rev. ed. Natl. Acad. Press, Washington, DC.

  • NRC (1995). Nutrient requirements of laboratory animals. 4th rev. ed. Natl. Acad. Press, Washington, DC.

  • Reeds P.J. (2000). Dispensable and indispensable amino acids for humans. J. Nutr., 130: 1835S-1840S.

  • Rees W.D., Hay S.M., Antipatis C. (2006). The effect of dietary protein on the amino acid supply and threonine metabolism in the pregnant rat. Reprod. Nutr. Dev., 46: 227-239.

  • Rezaeipour V., Fononi H., Irani M. (2012). Effects of dietary L-threonine and Saccharomyces cerevisiae on performance, intestinal morphology and immune response of broiler chickens. S. Afr. J. Anim. Sci., 42: 266-273.

  • Rhoads J.M., Liu Y., Niu X., Surendran S., Wu G. (2008). Arginine stimulates cdx2-transformed intestinal epithelial cell migration viaamechanism requiring both nitric oxide and phosphorylation of p70 S6 kinase. J. Nutr., 138: 1652-1657.

  • Rimbach M., Liebert F. (2000). Ergebnisse zum altersabhängigen Threoninbedarf aktueller Broilergenotypen. Proc. Soc. Nutr. Physiol., 9, p. 106.

  • Samadi F., Liebert F. (2006). Estimation of nitrogen maintenance requirement and potential for nitrogen deposition in fast growing chickens depending on age and sex. Poultry Sci., 85: 1421-1429.

  • Samadi F., Liebert F. (2007). Threonine requirement of slow-growing male chickens depends on age and dietary efficiency of threonine utilization. Poultry Sci., 86: 1140-1148.

  • Sartori A., Garay- Malpartida H.M., Forni M.F., Schumacher R.I., Dutra F., Sogayar M.C., Bechara E.J.H. (2008). Aminoacetone,aputative endogenous source of methylglyoxal, causes oxidative stress and death to insulin-producing RINm5f cells. Chem. Res. Toxicol., 21: 1841-1850.

  • Schneider W.C., Hogeboom G.H. (1950). Intracellular distribution of enzymes. V. Further studies on the distribution of cytochromecin rat liver homogenates. J. Biol. Chem., 183: 123-128.

  • Si J., Fritts C.A., Burnharn D.J., Waldroup P.W. (2004). Extent to which crude protein may be reduced in corn-soybean meal broiler diets through amino acid supplementation. Int. J. Poultry Sci., 3: 46-50.

  • SPSS (2005). Statistical package for social sciences, SPSS 14.0 for Windows. Statistical package for social sciences. SPSS Inc., Chicago, IL, USA.

  • Suryawan A., Jeyapalan A.S., Orellana R.A., Wilson F.A., Nguyen H.V., Davis T.A. (2008). Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing m TORC1 activation. Am. J. Physiol. Endocrinol. Metab., 295: E868-E875.

  • Taghinejad-Roudbaneh M., Babaee M.J., Afrooziyeh M., Alizadeh B. (2013). Estimation of dietary threonine requirement for growth and immune responses of broilers. J. Appl. Anim. Res., 41: 474-483.

  • Takahashi T., Toda E., Singh R.B., Meester F.D., Wilczynska A., Wilson D., June - ja L.R. (2011). Essential and non-essential amino acids in relation to glutamate. Open Nutraceuticals J., 4: 205-212.

  • Thong H.T., Liebert F. (2004). Potential for protein deposition and threonine requirement of modern genotype barrows fed graded levels of protein with threonine as limiting amino acid. J. Anim. Physiol. Anim. Nutr., 88: 196-203.

  • van der Sluis M., Schaart M.W.,de Koning B.A., Schierbeek H., Velcich A., Renes I.B.,van Goudoever J.B. (2009). Threonine metabolism in the intestine of mice: Loss of mucin 2 induces the threonine catabolic pathway. J. Pediatr. Gastroenterol. Nutr., 49: 99-107.

  • Vieira S.L., Angel C.R. (2012). Optimizing broiler performance using different amino acid density diets: What are the limits? J. Appl. Poultry Res., 21: 149-155.

  • Waldroup P.W., Jiang Q., Fritts C.A. (2005). Effects of glycine and threonine supplementation on performance of broiler chicks fed diets low in crude protein. Int. J. Poultry Sci., 4: 250-257.

  • Wu G. (2009). Amino acids: metabolism, functions and nutrition. Amino Acids, 37: 1-17.

  • Yuan J.H., Austic R.E. (2001). The effect of dietary protein level on threonine dehydrogenase activity in chickens. Poultry Sci., 80: 1353-1356.

  • Yuan J.H., Davis A.J., Austic R.E. (2000). Temporal response of hepatic threonine dehydrogenase in chickens to the initial consumption ofathreonine-imbalanced diet. J. Nutr., 130: 2746-2752.

OPEN ACCESS

Journal + Issues

Search