Isolation, Characterization and Differentiation Potential of Chicken Spermatogonial Stem Cell Derived Embryoid Bodies

Open access

Abstract

Human, murine and monkey spermatogonial stem cells (SSCs) have the capability to undergo self-renewal and differentiation into different body cell types in vitro, which are expected to serve as a powerful tool and resource for the developmental biology and regenerative medicine. We have successfully isolated and characterized the chicken SSCs from 3-day-old chicken testicular cells. The pluripotency was using Periodic Acid-Schiff (PAS ) staining or alkaline phosphatase staining, and antibodies to stage-specific embryonic antigens. In suspension culture conditions SSCs formed embryoid bodies (EBs) like embryonic stem (ES) cells. Subsequently EB differentiated into osteoblasts, adipocytes and most importantly into cardiomyocytes under induced differentiation conditions. The differentiation potential of EBs into cardiomyocyte-like cells was confirmed by using antibodies against sarcomeric α-actinin, cardiac troponin T and connexin 43. Cardiomyocytes-like cells were also confirmed by RT-PCR analysis for several cardiac cell genes like GATA-4, Nkx2-5, α-MHC, and ANF. We have successfully established an in vitro differentiation system for chicken SSCs into different body cells such as osteoblasts, adipocytes and cardiomyocytes. The most significant finding of this study is the differentiation potential of chicken SSCs into cardiomyocytes. Our findings may have implication in developmental biology and regenerative medicine by using chicken as the most potential animal model.

Aponte P.M., Soda T., Teerds K.J., Mizrak S.C., Vande Kant H.J., Derooij D.G. (2008). Propagation of bovine spermatogonial stem cells in vitro. Reproduction, 136: 543-557.

Brulet P., Babinet C., Kemler R., Jacob F. (1980). Monoclonal antibodies against trophectoderm- specific markers during mouse blastocyst formation. Proc. Natl. Acad Sci. USA, 77: 4113-4117.

Burt D.W. (2007). Emergence of the chicken as model organism: Implications for agriculture and biology. Poultry Sci., 86: 1460-1471.

Buttery L.D., Bourne S., Xynos J.D., Wood H., Hughes F.J., Hughes S.P., Episkop- ou V., Polak J.M. (2001). Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng., 7: 89-99.

Cao N., Liao J., Liu Z., Zhu W., Wang J., Liu L., Yu L., Xu P., Cui C., Xiao L., Yang H.T. (2011). In vitro differentiation of rat embryonic stem cells into functional cardiomyocytes. Cell Res., 21: 1316-1331.

Coelho M.J., Fernandes M.H. (2000). Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials, 21: 1095-1102.

Conrad S., Renninger M., Hennenlotter J., Wiesner T., Just L., Bonin M., Ai - cher W., Bühring H., Mattheus U., Mack A., Wagner H.J., Minger S., Matzkies M., Reppel M., Hescheler J., Sievert K.D., Stenzl A., Skutella T. (2008). Generation of pluripotent stem cells from adult human testis. Nature, 456: 344-349.

de Rooij D.G., Mizrak S.C. (2008). Deriving multipotent stem cells from mouse spermatogonial stem cells:anew tool for developmental and clinical research. Development, 135: 2207-2213.

Draper J.S., Pigott C., Thomson J.A., Andrews P.W. (2002). Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J. Anatomy, 200: 249-258.

Duplomb L., Dagouassat M., Jourdon P., Heymann D. (2007). Differentiation of osteoblasts from mouse embryonic stem cells without generation of embryoid body. In Vitro Cell Dev. Biol. Anim., 43: 21-24.

Fukuda K. (2001). Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs., 25: 187-193.

Ge J.H., Sun G.B., Wei C.X., Sun P.X., Li B.C. (2007). Differentiation of chicken embryonic PGCs into osteoblast in vitro. Chinese J. Anim. Sci., 43: 11-14.

George J., Kuboki Y., Miyata T. (2006). Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol. Bioeng., 95: 404-411.

Glover J.C., Boulland J.L., Halasi G., Kasumacic N. (2010). Chimeric animals models in human stem cell biology. ILAR J., 51: 62-73.

Golestaneh N., Kokkinaki M., Pant D., Jiang J., De Stefano D., Fernandez- Bue- no C., Rone J.D., Haddad B.R., Gallicano G.I., Dym M. (2009). Pluripotent stem cells derived from adult human testes. Stem Cells Dev., 18: 1115-1126.

Guan K., Rohwedel J., Wobus A.M. (1999). Embryonic stem cell differentiation models: cardiogenesis, myogenesis, neurogenesis, epithelial and vascular smooth muscle cell differentiation in vitro. Cytotechnology, 30: 211-226.

Guan K., Nayernia K., Maier L.S., Wagner S., Dresse R., Lee J.H., Nolte J., Wolf F., Li M., Engel W., Hasenfuss G. (2006). Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 440: 1199-1203.

Han J.Y. (2009). Germ cells and transgenesis in chickens. Comp. Immunol. Microbiol. Infect. Dis., 32: 61-80.

Intarapat S., Stern C.D. (2013). Chick stem cells: Current progress and future prospects. Stem Cell Res., 11: 1378-1392.

Jacobson R.D., Hollyday M. (1982). Abehavioral and electromyographic study of walking in the chick. J. Neurophysiol., 48: 238-256.

Jia X.J., Sun X.J., Xu L.L. (2008). Differentiation of human bone marrow mesenchymal stem cells into adipocytes underacertain microenvironment. J. Clin. Rehab. Tiss. Eng. Res., 12: 6635-6638.

Jokura K., Cui L., Asanuma K., Okouchi Y., Ogiwara N., Sasaki K. (2004). Cytochemical and ultrastructural characterization of growing colonies of human embryonic stem cells. J. Anatomy, 205: 247-255.

Jung J.G., Kim D.K., Park T.S., Lee S.D., Lim J.M., Han J.Y. (2005). Development of novel markers for the characterization of chicken primordial germ cells. Stem Cells, 23: 689-698.

Jung J.G., Lee Y.M., Park T.S., Park S.H., Lim J.M., Han J.Y. (2007). Identification, culture, and characterization of germline stem cell-like cells in chicken testes. Biol. Reprod., 76: 173-182.

Kanatsu- Shinohara M., Inoue K., Lee J.Y., Yoshimoto M., Ogonuki N., Miki H., Baba S., Kato T., Kazuki Y., Toyokuni S., Toyoshima M., Niwa O., Oshimu - ra M., Heike T., Nakahata T., Ishino F., Ogura A., Shinohara T. (2004). Generation of pluripotent stem cells from neonatal mouse testis. Cell, 119: 1001-1012.

Kossack N., Meneses J., Shefi S., Nguyen H.N., Chavez S., Nicholas C., Gro- moll J., Turek P.J., Reijo- Pera R.A. (2009). Isolation and characterization of pluripotent human spermatogonial stem cell-derived cells. Stem Cells, 27: 138-149.

Li B., Wang X.Y., Tian Z., Xiao X.J., Xu Q., Wei C.X., Y F., Sun H.C., Chen G.H. (2010). Directional differentiation of chicken spermatogonial stem cells in vitro. Cytotherapy, 12: 326-331.

Maeda S., Ohsako S., Kurohmaru M., Hayashi Y., Nishida T. (1994). Analysis for the stage specific antigen of the primordial germ cells in the chick embryo. J. Vet. Med. Sci., 56: 315-320.

Mitsiadis T.A., Cheraud Y., Sharpe P., Fontaine-Perus J. (2003). Development of teeth in chick embryos after mouse neural crest transplantations. Proc. Nat. Acad. Sci. USA, 100: 6541-6545.

Momeni-Moghaddam M., Matin M.M., Boozarpour S., Sisakhtnezhad S., Meh- rjerdi H.K., Farshchian , M., Dastpak M., Bahrami A.R. (2014). Asimple method for isolation, culture, and in vitro maintenance of chicken spermatogonial stem cells. In Vitro Cell. Dev. Biol.-Animal., 50: 155-161.

Petitte J.N., Liu1 G., Yang Z. (2004). Avian pluripotent stem cells. Mech. Dev., 121: 1159-1168.

Wolpert L. (2004). Much more from the chicken’s egg than breakfast -awonderful model system. Mech. Dev., 121: 1015-1017.

Zuo Q., Li D., Zhang L., Elsayed A.K., Lian C., Shi Q., Zhang Z., Zhu R., Wang Y., Jin K., Zhang Y., Li B. (2015). Study on the regulatory mechanism of the lipid metabolism pathways during chicken male germ cell differentiation based on RNA-Seq. PLo S ONE 10(2): e0109469. doi:10.1371/journal.pone.0109469.

Annals of Animal Science

The Journal of National Research Institute of Animal Production

Journal Information


IMPACT FACTOR 2018: 1.515
5-year IMPACT FACTOR: 1,246


CiteScore 2018: 1.4

SCImago Journal Rank (SJR) 2018: 0.509
Source Normalized Impact per Paper (SNIP) 2018: 0.869

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 223 15
PDF Downloads 150 107 8