Normalization of Showjumping Competition’s Results

Zuzana Schubertová 1  and Juraj Candrák 1
  • 1 Department of Animal Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic


The aim of this study was to verify the newly proposed transformation of penalty points and ranking of showjumping horses for the purpose of genetic evaluation. Genomic information in the transformation of input data was used as well. Data of showjumping competition Global Champions Tour was used. Profit of penalty points was transformed to normally distributed variable using Blom formula (height of obstacles and height of obstacles with single nucleotide polymorphism - SNP effect taken into account). Non-normal distribution was obtained. The rankings of sport horses in competitions were transformed using the Blom formula (height of obstacles taken into account) to normal distribution (tests of normality Kolmogorov-Smirnov (KS) test Pr>D, D 0.011, P>0.150, Cramer-von Mises (CM) test Pr>W-Sq, W-Sq 0.039, P>0.250, Anderson-Darling test (AD) Pr>A-Sq, A-Sq 0.638, P<0.097). Better distributed variable ranking transformed by Blom formula (height of obstacles and SNP effect taken into account) was obtained (KS test Pr>D, D 0.004, P>0.150, CM test Pr>W-Sq, W-Sq 0.004, P>0.250, AD test Pr>A-Sq, A-Sq 0.062, P>0.250). Model where all used fixed effects to equation were applied without any combination of the effects was tested, R2 0.54. Variable ranking was transformed to normal score by Blom formula (height of obstacles was taken into account). In the following model some effects were taken into account in the form of quadratic regression, R2 0.61. Variable ranking was transformed to normal score, the same as in previous model. In the last model we transformed variable ranking to normal score by Blom formula, taking into account height of obstacles and SNP effect. Same effects as in previous model were used, R2 0.60

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aldridge L.I., Kelleher D.L., Reilly M., Brophy P.O. (2000). Estimation of the genetic correlation between performances at different levels of showjumping competition in Ireland. J. Anim. Breed. Genet., 117: 65-72.

  • Bugislaus A.E., Roehe R., Kalm E. (2005). Comparison of two different statistical models considering individual races or racetracks for evaluation of German trotters. Livest. Prod. Sci., 92: 69-76.

  • Calus M.P.L., Meuwissen, T.H.E.,de Roos A.P.W., Veerkamp R.F. (2007). Accuracy of genomic selection using different methods to define haplotypes. Genetics, 178: 553-561.

  • Ekiz B., Kocak O. (2005). Phenotypic and genetic parameter estimates for racing traits of Arabian horses in Turkey. J. Anim. Breed. Genet., 122: 349-356.

  • Foran M.K., Reilly M.P., Kellecher D.L., Langan K.W., Brophy P.O. (1995). Genetic evaluation of show-jumping horses in Ireland using ranks in competition. Proc. 46th Annu. Mtg., European Association for Animal Production (EAAP), Prague, Czech Republic, 4-7.09.1995, p. 351.Gálik B., Bíro D., Juráček M., Šimko M., Vaščáková V., Rolinec M. (2011). The effect of phytoadditives on macroelements digestibility of sport horses. J. Cent. Eur. Agr., 12: 390-397.

  • Gu J., Orr N., Park S.D., Katz L.M., Sulimova G., Mac Hugh D.E., Hill E.W. (2009). Agenome scan for positive selection in Thoroughbred horses. Plo S One, 4: 1-17, available online

  • Hill E.W., Gu J., Mc Givney B.A., Mac Hugh D.E. (2010). Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance. Anim. Genet, 41: 56-63.

  • Janssens S., Geysen D., Vandepitte W. (1997). Genetic parameters for show jumping in Belgian sporthorses. Proc. 48th Annu. Mtg., European Association for Animal Production (EAAP), Vienna, Austria, 25-28.08.1997, p. 5.

  • Kearsley C.G.S., Woolliams J.A., Coffey M.P., Brotherstone S. (2008). Use of competition data for genetic evaluations of eventing horses in Britain: Analysis of the dressage, showjumping and cross country phases of eventing competition. Livest. Sci., 118: 72-81.

  • Langlois B., Vrijenhoek T. (2004). Qualification status and estimation of breeding value in French trotters. Livest. Prod. Sci., 89: 187-194.

  • Misztal I. (2009) SNP_Sim ver. 1.2. Simulation and analyses of genomic SNPdata, University of Georgia.

  • Osborne J.W. (2002). Notes on the use of data transformations. Practical Assessment, Research & Evaluation, 8: 6, available online

  • Posta J., Komlósi I., Mihók S. (2009 a). Breeding value estimation in the Hungarian Sport Horse population. Vet. J., 181: 19-23.

  • Posta J., Mihók S., Márkus S., Komlósi I. (2009 b). Analysis of Hungarian sport horse show jumping results using different transformations and models. Arch. Tierzucht, 52: 451-458.

  • Přibyl J., Bolečková J., Haman J., Kott T., Přibylová J., Šimečková M., Vos- trý L., Zavadilová L. (2011). Úprava soustav rovnic pro předpověď genoické plemenné hodnoty (GEPH) jednokrokovou metodou. Praha Uhříněves, Česká republika, Výzkumný ústav živočišné výroby v.v.i., 29 pp.

  • Přibyl J., Haman J., Kott T., Přibylová J., Šimečková M., Vostrý L., Zavadi - lová L., Čermák V., Růžička Z., Šplíchal J., Verner M., Motyčka J., Vondráše k L. (2012). Single-step prediction of genomic breeding value inasmall dairy cattle population with strong import of foreign genes. Czech J. Anim. Sci., 57: 151-159.

  • Razali N., Wah Y. (2010). Power comparisons of some selected normality tests. Proc. Regional Conference on Statistical Sciences. Kota Baru, Malaysia, 13-14.06.2010, p. 126.

  • Reilly M., Foran M.K., Kelleher D.L., Flanagan M.J., Brophy P.O. (1998). Estimation of genetic value of showjumping horses from the ranking of all performances in competition. J. Anim. Breed. Genet., 115: 17-25.

  • Riecka Z., Candrák J. (2010). The influence of the genomic data on the breeding values estimation in the Slovak Republic. Acta Fytotech. Zootech., 2: 33-35.

  • Scheiber J., Dickson M. (2007). Normal and Skewed Data. Johannesburg, South Africa, © RADMASTE Centre, 28 pp.

  • Schröder W., Klostermann A., Stock K.F., Distl O. (2011). Agenome-wide association study for quantitative trait loci of show-jumping in Hanoverian warmblood horses. Anim. Genet., 43: 392-400.

  • Trakovická A., Gábor M., Miluchová M., Minarovič T., Šťastná D. (2012). Analysis of the Nebulin- Related Anchoring Protein Gene (N-RAP) SNP Polymorphism (C/T) in Slovak Warmblood Horse by PCR-RFLP Method. Anim. Sci. Biotech., 45: 265-268.

  • Van Raden P.M., Olson K.M., Null D.J., Sargolzaei M., Winters M.,van Kaam J.B.C.H.M. (2012). Reliability increases from combining 50,000- and 777,000-marker genotypes from four countries. Proc. Interbull Annu. Mtg. Cork, Ireland, 28.05-1.06.2012.

  • Viklund Å., Näsholm A., Strandberg E., Philipsson J. (2010). Effects of long-time series of data on genetic evaluations for performance of Swedish Warmblood riding horses. Animal,11: 1823-1831.Wiggans G.R., Cooper T.A., Van Raden P.M., Olson K.M., Tooker M.E. (2012). Use of the Illumina Bovine3K Bead Chip in dairy genomic evaluation. J. Dairy Sci., 95: 1552-1558.

  • Zurovacová B., Candrák J., Židek R., Jiskrová I., Buleca J., Zöldág L. (2008). The BLUP-animal model for the estimation of the breeding value of show jumping horses. Magy. Allatorvosok, 130: 651-657.


Journal + Issues