Source Width of Frontal Phantom Sources: Perception, Measurement, and Modeling

Open access


Phantom sources are known to be perceived similar to real sound sources but with some differences. One of the differences is an increase of the perceived source width. This article discusses the perception, measurement, and modeling of source width for frontal phantom sources with different symmetrical arrangements of up to three active loudspeakers. The perceived source width is evaluated on the basis of a listening test. The test results are compared to technical measures that are applied in room acoustics: the inter-aural cross correlation coefficient (IACC) and the lateral energy fraction (LF). Adaptation of the latter measure makes it possible to predict the results by considering simultaneous sound incidence. Finally, a simple model is presented for the prediction of the perceived source width that does not require acoustic measurements as it is solely based on the loudspeaker directions and gains.

1. Barron M., Marshall A.H. (1981), Spatial impres-sion due to early lateral reflections in concert halls: Thederivation of a physical measure, Journal of Sound and Vibration, 77, 2, 211-232.

2. Blau M. (2002), Difference limens for measures of ap-parent source width, Forum Acusticum, Sevilla, Spain.

3. Blauert J., Lindemann W. (1986), Spatial mappingof intracranial auditory events for various degrees ofinteraural coherence, The Journal of the Acoustical So- ciety of America, 79, 3, 806-813.

4. Blauert J., Lindemann W. (1986), Auditory spa-ciousness: Some further psychoacoustic analyses, The Journal of the Acoustical Society of America, 80, 2, 533-542.

5. Blauert J. (1983), Spatial Hearing, MIT Press.

6. Blumlein A.D. (1958), British patent specification394,325 (improvements in and relating to sound-transmission, sound-recording and sound-reproducingsystems), J. Audio Eng. Soc., 6, 2, 91-98.

7. Brookes T., Kim C., Mason R. (2007), An investiga-tion into head movements made when evaluating var-ious attributes of sound, Preprint 7031, 122nd Conv. Audio Eng. Soc., Vienna.

8. Cox T.J., Davies W.J., Lam Y.W. (1993), The sensi-tivity of listeners to early sound field changes in audito-ria, Acta Acustica united with Acustica, 79, 1, 27-41.

9. Daniel J. (2001), Repr´esentation de champs acous-tiques, application `a la transmission et `a la reproduc-tion de sc´enes sonores complexes dans un contexte mul-tim´edia, Ph.D. Thesis, Universit´e Paris 6.

10. de Vries D., Hulsebos E.M., Baan J. (2001), Spa-tial fluctuations in measures for spaciousness, The Journal of the Acoustical Society of America, 110, 2, 947-954.

11. Frank M., Sontacchi A. (2012), Performance re-view of an expert listening panel, [in:] Fortschritte der Akustik, DAGA, Darmstadt.

12. Frank M., Sontacchi A., Höldrich R. (2010), Training and guidance tool for listening panels, [in:] Fortschritte der Akustik, DAGA, Berlin.

13. Frank M., Marentakis G., Sontacchi A. (2011), A simple technical measure for the perceived sourcewidth, [in:] Fortschritte der Akustik, DAGA, D¨usseldorf.

14. Gerzon M.A. (1992), General metatheory of auditorylocalisation, [in:] Preprint 3306, 92nd Conv. Audio Eng. Soc., Vienna.

15. Hidaka T., Beranek L.L., Okano T. (1995), Inter-aural cross-correlation, lateral fraction, and low- andhigh-frequency sound levels as measures of acousticalquality in concert halls, The Journal of the Acoustical Society of America, 98, 2, 988-1007.

16. ISO (2009), ISO 3382-1:2009: Acoustics - measurementof room acoustic parameters - part 1: Performancespaces.

17. ITU (1997), ITU-R BS.1116-1: Methods for the subjec-tive assessment of small impairments in audio systemsincluding multichannel sound systems.

18. Kin M.J., Plaskota P. (2011), Comparison of soundattributes of multichannel and mixed-down stereorecordings, Archives of Acoustics, 36, 2, 333-345.

19. Mackensen P. (2008), Auditive Localization & HeadMovements, Ph.D. Thesis, TU Berlin.

20. Martin G., Woszczyk W., Corey J., Quesnel R. (1999), Controlling phantom image focus in a multi-channel reproduction system, [in:] Preprint 4996, 107th Conv. Audio Eng. Soc., New York.

21. Morimoto M., Iida K. (2005), Appropriate frequencybandwidth in measuring interaural cross-correlation asa physical measure of auditory source width, Acoustical Science and Technology, 26, 2, 179-184.

22. Morimoto M., Maekawa Z. (1988), Effects of lowfrequency components on auditory spaciousness, Acta Acustica united with Acustica, 66, 4, 190-196.

23. Okano T. (2002), Judgments of noticeable differencesin sound fields of concert halls caused by intensity vari-ations in early reflections, The Journal of the Acousti- cal Society of America, 111, 1, 217-229.

24. Pulkki V. (1999), Uniform spreading of amplitudepanned virtual sources, [in:] IEEE Workshop on Appli- cations of Signal Processing to Audio and Acoustics, 187-190.

25. Schroeder M.R., Gottlob D., Siebrasse K.F. (1974), Comparative study of european concert halls:correlation of subjective preference with geometric andacoustic parameters, The Journal of the Acoustical So- ciety of America, 56, 4, 1195-1201.

26. Simon L.S.R., Mason R., Rumsey F. (2009), Localiza-tion curves for a regularly-spaced octagon loudspeakerarray, [in:] Preprint 7915, 127th Conv. Audio Eng. Soc., New York.

27. Sontacchi A., Pomberger H., Höldrich R. (2009), Recruiting and evaluation process of an expert listeningpanel, [in:] NAG/DAGA International Conference on Acoustics, Rotterdam.

28. Theile G. (1991), On the naturalness of two-channelstereo sound, J. Audio Eng. Soc., 39, 10, 761-767.

29. van Dorp Schuitman J. (2011), Auditory modellingfor assessing room acoustics, Ph.D. Thesis, Technische Universiteit Delft.

30. Wendt K. (1963), Das Richtungsh¨oren bei der¨ Uberlagerung zweier Schallfelder bei Intensit¨ats- undLaufzeitstereophonie, Ph.D. Thesis, RWTH Aachen.

31. Zotter F., Frank M., Marentakis G., Sontacchi A. (2011), Phantom source widening with deter-ministic frequency dependent time delays, [in:] DAFx-11, Paris.

Archives of Acoustics

The Journal of Institute of Fundamental Technological of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.816
5-year IMPACT FACTOR: 0.835

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.432
Source Normalized Impact per Paper (SNIP) 2016: 0.948

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 14
PDF Downloads 41 41 6