Influence of MoO3 on the Structure of Lithium Aluminum Phosphate Glasses

Open access

Abstract

IR spectroscopy, density and ultrasonic velocity measurements have been carried out for aluminum lithium phosphate glasses with and without MoO3. The observed changes in the FTIR spectra of the glasses were related to the modifier/former role of molybdenum ions. The results revealed that the density increases with increasing MoO<sub>3</sub> content, which was attributed to the increase in the compactness and packing of the glass network. The ultrasonic data were analyzed in terms of creation of new bonds of MoO<sub>3</sub> attached to phosphate units. The new bonds increased the average crosslink density and the number of network bonds per unit volume along with a strengthening of the different modes of vibrations which in its turn increased the ultrasonic velocity, the rigidity and hence the elastic moduli of the glasses.

1. Abid M., Elmoudane M., Et-tabirou M. (2002), Spectroscopic studies of the structure of sodium leadoligophosphate glasses, Phys. Chem. Glasses, 43, 267-270.

2. Bih L., Abbas L., Nadiri A., Khemakhem H., Elouadi B. (2008), Investigations of molybdenumredox phenomenon in Li2O-MoO3-P2O5 phosphateglasses, J. Mol. Struct. 872, 1-9.

3. Boudlich D., Bih L., El Hassane Archidi M., Haddad M., Yacoubi A., Nadiri A., Elouadi B. (2002), Infrared, Raman, and Electron Spin ResonanceStudies of Vitreous Alkaline Tungsten Phosphates andRelated Glasses, J. Am. Ceram. Soc., 85, 623-630.

4. Bridge B., Patel N. (1986), The elastic constantsand structure of the vitreous system Mo-P-O, J. Mater. Sci., 21, 1187-1205.

5. Bridge B., Patel N. (1987), Composition dependenceof the infra-red absorption spectra of molybdenum phos-phate glasses and some crystalline analogues, J. Non- Cryst. Solids, 91, 27-42.

6. Brow R., Click C., Alam T. (2000), Modifier coor-dination and phosphate glass networks, J. Non-Cryst. Solids, 274, 9-16.

7. Brow R. (2000), Review: the structure of simple phos-phate glasses, J. Non-Cryst. Solids, 263, 1-28.

8. Campbell J., Suratwala T. (2000), Nd-doped phos-phate glasses for high-energy/high-peak-power lasers, J. Non-Cryst. Solids, 263, 318-341.

9. Chowdari B., Gopalakrishnan R., Tang S., Kuok M. (1988), Characterization of Ag2O:MoO3:P2O5 glasses, Solid State Ion., 28, 704-709.

10. Chowdari B., Tan K., Chia W., Gopalakrishnan R. (1991), Thermal, physical, electrical and XPS stud-ies of the Li2O: P2O5: MoO glass system, J. Non- Cryst. Solids, 128, 18-29.

11. Ciceo Lucacel R., Hulpus A., Simon V., Arde- lean I. (2009), Structural characterization of phos-phate glasses doped with silver, J. Non-Cryst. Solids, 355, 425-429.

12. Cozar O., Magdas D., Ardelean I. (2008), EPRstudy of molybdenum-lead-phosphate glasses, J. Non- Cryst. Solids, 354, 1032-1035.

13. Cozar O., Magdas D., Nasdala L., Ardelean I., Damian G. (2006), Raman spectroscopic study of somelead phosphate glasses with tungsten ions, J. Non- Cryst. Solids, 352, 3121-3125.

14. Dai S., Sugiyama A., Hu L., Liu Z., Huang G., Jiang Z. (2002), The spectrum and laser propertiesof ytterbium doped phosphate glass at low temperature, J. Non-Cryst. Solids, 311, 138-144.

15. Damodaran K., Rao K. (1989), Elastic Properties ofAlkali Phosphomolybdate Glasses, J. Am. Ceram. Soc., 72, 533-539.

16. Donald I. (1989), Methods for improving the mechani-cal properties of oxide glasses, J. Mater. Sci., 24, 4177-4208.

17. ElBatal H., Hamdy Y., Marzouk S. (2008), Gamma ray interactions with V2O5-doped sodiumphosphate glasses, Mater. Chem. Phys., 112, 991-1000.

18. Eraiah B., Smitha M., Anavekar R. (2010), Elasticproperties of lead-phosphate glasses doped with samar-ium trioxide, J. Phys. Chem. Solids, 71, 153-155.

19. Higazy A., Bridge B. (1985), Elastic constants andstructure of the vitreous system Co3O4-P2O5, J. Non- Cryst. Solids, 72, 81-108.

20. Hudgens J., Brow R., Tallant D., Martin S. (1998), Raman spectroscopy study of the structure oflithium and sodium ultraphosphate glasses, J. Non- Cryst. Solids, 223, 21-31.

21. Ivascu C., Timar Gabor A., Cozar O., Daraban L., Ardelean I. (2011), FT-IR, Raman and thermolu-minescence investigation of P2O5-BaO-Li2O glass sys-tem, J. Molec. Struct., 993, 249-253.

22. Jastrzebski W., Sitarz M., Bułat K. (2011), In-frared spectroscopy of different phosphates structuresSpectrochim, Acta A, 79, 722-727.

23. Jiang S., Myers M., Peyghambarian N. (1998), Er3+ doped phosphate glasses and lasers, J. Non-Cryst. Solids, 239, 143-148.

24. Khafagy A. (2001), Infrared and Ultrasonic Investi-gations of Some [(MnO2)x-(P2O5)100−x].1 wt% Nd2O3 Glasses, Phys. Stat. Sol. (a), 186, 105-114.

25. Lazarev A. (1968), Kolebatielnyje spektry i strojenijesilikatov [in Russian], Nauka, Leningrad.

26. Lide D. (2004), CRC Handbook of Chemistry andPhysics, 84th edition, CRC Press, Boca Raton, Fl.

27. Little Flower G., Sahaya Baskaran G., Srini- vasa Reddy M., Veeraiah N. (2007), The structuralinvestigations of PbO-P2O5-Sb2O3 glasses with MoO3 as additive by means of dielectric, spectroscopic andmagnetic studies, Physica B, 393, 61-72.

28. Magdas D., Cozar O., Chis V., Ardelean I., Vedeanu N. (2008), The structural dual role of Fe2O3 in some lead-phosphate glasses, Vib. Spectrosc., 48, 251-254.

29. Manupriya K., Thind K., Singh G., Sharma, Ra- jendran V. (2009), Influence of addition of Al2O3 on physical, structural, acoustical and in-vitro bioactiveproperties of phosphate glasses, Phys. Status Solidi A, 206, 1447-1455.

30. Montenero A., Aielli M., Gnappi G., Lorenzi A., Sglavo V., Royer Carfagni G. (2004), Mechani-cal properties of PbO-ZnO-P2O5 glasses, Phys. Chem. Glasses, 46, 538-543.

31. Moustafa Y., El-Egili K. (1998), Infrared spectra ofsodium phosphate glasses, J. Non-Cryst. Solids, 240, 144-153.

32. Muńoz F., Agulló-Rueda F., Montagne L., Marchand R., Dur´an A., Pascual L. (2004), Struc-ture and properties of (25-x/2)Li2O.(25-x/2)Na2O.xPbO.50P2O5 metaphosphate glasses, J. Non-Cryst. Solids, 347, 153-158.

33. Prasad S., Sahaya Baskaran G., Veeraiah N. (2005), Spectroscopic, magnetic and dielectric investi-gations of BaO-Ga2O3-P2O5 glasses doped by Cu ions, Phys. Stat. Sol.(a), 202, 2812-2828.

34. Proulx P., Cormier G., Capobianco J., Cham- pagnon B., Bettinelli M. (1994), Raman and lowfrequency Raman spectroscopy of lead, zinc and bariummetaphosphate glasses doped with Eu3+ ions, J. Phys. Condens. Matter, 6, 275-283.

35. Rao K. (2002), Structural Chemistry of Glasses, Else- vier, North Holland.

36. Reis S., Faria D., Martinelli J., Pontuschka W., Day D., Partiti C. (2002), Structural features of leadiron phosphate glasses, J. Non-Cryst. Solids, 304, 188-194.

37. Saddeek Y. (2011), Network structure of molybdenumlead phosphate glasses: Infrared spectra and constantsof elasticity, Physica B, 406, 562-566.

38. Saddeek Y., Afifi H., Abd El-Aal N. (2007), In-terpretation of mechanical properties and structure ofTeO2-Li2O-B2O3 glasses, Physica B, 398, 1-7.

39. Saddeek Y., Gaafar M., Bashier S. (2010), Struc-tural influence of PbO by means of FTIR and acousticson calcium alumino-borosilicate glass system, J. Non- Cryst. Solids, 356, 1089-1095.

40. Saddeek Y., Shaaban E., Aly A., Sayed I. (2009), Characterization of some lead vanadate glasses, J. Al- loys and Compounds, 478, 447-452.

41. Selvaraj U., Rao K. (1985), Characterization Studiesof Molybdophosphate Glasses and a Model of StructuralDefects, J. Non-Cryst. Solids, 72, 315-334.

42. Sharaf El-Deen L., Al Salhi M., Elkholy M. (2008), Spectral properties of PbO-P2O5 glasses, J. Non-Cryst. Solids, 354, 3762-3766.

43. Sidkey M., El Mallawany R., Abousehly A., Sad- deek Y. (2002), Relaxation of longitudinal ultrasonicwaves in some tellurite glasses, Mater. Chem. Phys., 74, 222-229.

44. ˇSubˇcik J., Koudelka L., Moˇsner P., Montagne L., Revel B., Gregora I. (2009), Structure and prop-erties of MoO3-containing zinc borophosphate glasses, J. Non-Cryst. Solids, 355, 970-975.

45. Sudarsan V., Mishra R., Kulshreshth S. (2004), Thermal and structural studies on TeO2 substituted(PbO)0.5(P2O5)0.5 glasses, J. Non-Cryst. Solids, 342, 160-165.

46. Wells A. (1975), Structural Inorganic Chemistry, 4th edition, Clarendon Press, Oxford.

Archives of Acoustics

The Journal of Institute of Fundamental Technological of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.816
5-year IMPACT FACTOR: 0.835

CiteScore 2016: 1.15

SCImago Journal Rank (SJR) 2016: 0.432
Source Normalized Impact per Paper (SNIP) 2016: 0.948

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 111 19
PDF Downloads 52 49 6