Association between body size and selected hematological parameters in men and women aged 45 and above from a hospitalized population of older adults: an insight from the Polish Longitudinal Study of Aging (1960–2000)

Open access

Abstract

In elderly people, anemia occurs with increasing frequency with each advancing decade and can be a harbinger of very serious health conditions, including gastrointestinal bleeding, gastric and duodenal ulcers, and cancer. Therefore, age-dependant changes in hematological parameters deserve special attention. Nonetheless, very few longitudinal studies of aging have focused on possible associations between basic anthropometric characteristics and hematological parameters in older people. Here, we present some evidence that body size can be associated with red blood cell count as well as some other selected hematological parameters in adults aged 45 to 70 years. Longitudinal data on anthropometric and hematological parameters have been obtained from physically healthy residents at the Regional Psychiatric Hospital for People with Mental Disorders in Cibórz, Lubuskie Province, Poland (142 individuals, including 68 men and 74 women). The residents who took psychoactive drugs were excluded from the study. To evaluate the studied relationships, three anthropometric traits were used and three dichotomous divisions of the study sample were made. The medians of body height, body weight, and body mass index at the age of 45 years were used to divide the sample into: shorter and taller, lighter and heavier, and slimmer and stouter individuals, respectively. Student’s t-test, Pearson’s correlation, and regression analysis were employed. The results of the present study suggest that the relationship between body size and red blood cell count is slightly more pronounced in men and its strength depends on age. However, the correlations between body size and red blood cell count proved to be weak in both sexes. With aging, the strength of the relation decreased gradually, which might have been caused by the aging-associated changes in the hematopoietic system, anemia, or was an artifact. Further studies are needed to elucidate the unclear association between body size and hematological parameters in older adults.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adamson JW. 2008. New blood old blood or no blood? N Engl J Med 358:1295-6.

  • Bachman E Feng R Travison T Li M Olbina G Ostland V Ulloor J Zhang A Basaria S Ganz T Westerman M Bhasin S. 2010. Testosterone suppresses hepcidin in men: a potential mechanism for testosterone- induced erythrocytosis. J Clin Endocrinol Metab 95:4743-7.

  • Beers MH Berkow R. 2000. The Merck manual of geriatrics. New York: Merck.

  • Bianconi E Piovesan A Facchin F Beraudi A Casadei R Frabetti F Vitale L Pelleri MC Tassani S Piva F Perez-Amodio S Strippoli P Canaider S. 2013. An estimation of the number of cells in the human body. Ann Hum Biol 40:463-71.

  • Bijlani RL Manjunatha S. 2011. Understanding medical physiology: a textbook for medical students. New York: Jaypee Brothers Medical Publishers.

  • Borysławski K Chmielowiec K Chmielewski P Chmielowiec J. 2015. Zmiany z wiekiem wybranych cech antropometrycznych fizjologicznych i biochemicznych oraz ich związek z długością życia mężczyzn i kobiet. Monographs of Physical Anthropology 2. Available at: http://www.org.up.wroc.pl/antropologia/mpa/.

  • Bosman GJ Werre JM Willekens FL Novotny VM. 2008. Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion. Transfus Med 18:335-47.

  • Chmielewski P Borysławski K Chmielowiec K Chmielowiec J. 2015a. Height loss with advancing age in a hospitalized population of Polish men and women: magnitude pattern and associations with mortality. Anthropol Rev 78(2):157-68.

  • Chmielewski P Borysławski K Chmielowiec K Chmielowiec J. 2015b. Longitudinal and cross-sectional changes with age in selected anthropometric and physiological traits in hospitalized adults: an insight from the Polish Longitudinal Study of Aging (PLSA). Anthropol Rev 78(3):317-36.

  • Chmielewski PP Borysławski K Chmielowiec K Chmielowiec J Strzelec B. 2016. The association between total leukocyte count and longevity: Evidence from longitudinal and cross-sectional data. Ann Anat 204:1-10.

  • Christ ER Cummings MH Westwood NB Sawyer BM Pearson TC Sönksen PH Russell-Jones DL. 1997. The importance of growth hormone in the regulation of erythropoiesis red cell mass and plasma volume in adults with growth hormone deficiency. J Clin Endocrinol Metab 82:2985-90.

  • Cohen RM Franco RS Khera PK Smith EP Lindsell CJ Ciraolo PJ Palascak MB Joiner CH. 2008. Red cell life span heterogeneity in hematologically normal people is sufficient to alter HbA1c. Blood 112:4284-91.

  • Cuneo RC Salomon F Wiles CM Hesp R Sönksen PH. 1991. Growth hormone treatment in growth hormone deficient adults. II. Effects on exercise performance. J Appl Physiol 70:688-94.

  • Dean L. 2005. Blood groups and red blood cell antigens. NCBI.

  • Dobson MG Redfern CP Unwin N Weaver JU. 2001. The N363S polymorphism of the glucocorticoid receptor: potential contribution to central obesity in men and lack of association with other risk factors for coronary heart disease and diabetes mellitus. J Clin Endocrinol Metab 86:2270-4.

  • Dukes PP Goldwasser E. 1961. Inhibition of erythropoiesis by estrogens. Endocrinology 69:21-9.

  • Fonseca AM Pereira CF Porto G Arosa FA. 2003. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds. Cell Immunol 224:17-28.

  • Gardner D Shoback D. 2011. Greenspan’s basic clinical endocrinology. New York: McGraw-Hill Education.

  • Goldberg MA Dunning SP Bunn HF. 1988. Regulation of the erythropoietin gene: ev idence that the oxygen sensor is a heme protein. Science 242:1412-5.

  • Goldberg MA Imagawa S Dunning PS Bunn HF. 1989. Oxygen sensing and erythropoietin gene regulation. Contrib Nephrol 70:39-56.

  • Golde DW Bersch N Chopra IJ Cline MJ. 1977a. Thyroid hormones stimulate erythropoiesis in vitro. Br J Haematol 37:173-7.

  • Golde DW Bersch N Li CH.1977b. Growth hormone: species-specific stimulation of erythropoiesis in vitro. Science 196:1112-3.

  • Goodman JW Hall EA Miller KL Shinpock SG. 1985. Interleukin 3 promotes erythroid burst formation in “serum-free” cultures without detectable erythropoietin. Proc Natl Acad Sci USA 82:3291-5.

  • Guo W Bachman E Li M Roy CN Blusztajn J Wong S Chan SY Serra C Jasuja R Travison TG Muckenthaler MU Nemeth E Bhasin S. 2013. Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell 12:280-91.

  • Haase VH. 2010. Hypoxic regulation of erythropoiesis and iron metabolism. Am J Physiol Renal Physiol 299:F1-F13.

  • Hattangadi SM Wong P Zhang L Flygare J Lodish HF. 2011. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins RNAs and chromatin modifications. Blood 118:6258-68.

  • Huang YX Wu ZJ Mehrishi J Huang BT Chen XY Zheng XJ Liu WJ Luo M. 2011. Human red blood cell aging: correlative changes in surface charge and cell properties. J Cell Mol Med 15:2634-42.

  • Jelkmann W. 2012. Functional significance of erythrocytes. In: Lang F Föller M editors. Erythrocytes. Physiology and patophysiology. London: Imperial College Press.

  • Lindemann R. 1973. Erythropoiesis inhibiting actor (EIF). The inhibitory effect of oestrogens on erythropoiesis and the content of oestrogens in the urinary EIF. Scand J Haematol 11:319-24.

  • Lodish H Flygare J Chou S. 2010. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 62:492-6.

  • Martin R. 1928. Lehrbuch der Anthropologie in systematischer Darstellung mit besonderer Berücksichtigung der anthropologischen Methoden. Erster band: Somatologie. Jena: Verlag von Gustav Fischer.

  • Mathur SC Schexneider KI Hutchison RE. 2011. Hematopoiesis. In: McPherson RA Pincus MR editors. Henry’s clinical diagnosis and management by laboratory methods. Philadelphia: Elsevier Saunders.

  • Meineke HA Crafts RC. 1968. Further observations on the mechanism by which androgens and growth hormone influence erythropoiesis. Ann N Y Acad Sci 29:298-307.

  • Merchav S Tatarsky I Hochberg Z. 1988. Enhancement of erythropoiesis in vitro by human growth hormone is mediated by insulin-like growth factor I. Br J Haematol 70:267-71.

  • Mescher AL. 2013. Junqueira’s basic histology.Text and atlas. New York: McGraw Hill.

  • Mirand EA Gordon AS. 1966. Mechanism of estrogen action in erythropoiesis. Endocrinology 78:325-32.

  • Morera D MacKenzie SA. 2011. Is there a direct role for erythrocytes in the immune response? Vet Res 42:89.

  • Naeim F Rao PN Song SX Grody WW. 2013. Atlas of hematopathology. Morphology immunophenotype cytogenetics and molecular approaches. New York: Academic Press.

  • Naets JP Wittek M. 1966. Mechanism of action of androgens on erythropoiesis. Am J Physiol 210:315-20.

  • Nozaki H Ashitomi I Higa K Akisaka M Suzuki M. 1995. Red blood cell parameters of healthy centenarians. Nihon Ronen Igakkai Zasshi 32:471-7.

  • Patel KV Guralnik JM. 2009. Prognostic implications of anemia in older adults. Haematologica 94:1-2.

  • Peschle C Rappaport IA Sasso GF Gordon AS Condorelli M. 1972. Mechanism of growth hormone (GH) action on erythropoiesis. Endocrinology 91:511-7.

  • Peschle C Rappaport IA Magli MC MaroneG Lettieri F Cillo C Gordon AS. 1978. Role of the hypophysis in erythropoietin production during hypoxia. Blood 51:1117-24.

  • Pimkin M Weiss MJ. 2012. Erythropoiesis. In: Lang F Föller M editors. Erythrocytes. Physiology and patophysiology. London: Imperial College Press.

  • Richards RS Roberts TK McGregor NR Dunstan RH Butt HL. 1998. The role of erythrocytes in the inactivation of free radicals. Med Hypotheses 50:363-7.

  • Rishpon-Meyerstein N Kilbridge T Simone J Fried W. 1968. The effect of testosterone on erythropoietin levels in anemic patients. Blood 31:453-60.

  • Shahani S Braga-Basaria M Maggio M Basaria S. 2009. Androgens and erythropoiesis: past and present. J Endocrinol Invest 32:704-16.

  • Shahidi NT. 1973. Androgens and erythropoiesis.N Engl J Med 289:72-80.

  • Simkin V. 1961. Urinary 17-ketosteroid and 17-ketogenic steroid excretion in obese patients. N Engl J Med 264:974-7.

  • Sohmiya M Kato Y. 2001. Effect on long-termadministration of recombinant human growth hormone (rhGH) on plasma erythropoietin (EPO) and haemoglobin levels in anaemic patients with adult GH deficiency. Clin Endocrinol 55:749-54.

  • Sprague RS Stephenson AH Ellsworth ML.2007. Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab 18:350-5.

  • Umemura T al-Khatti A Donahue RE Papayannopoulou T Stamatoyannopoulos G 1989. Effects of interleukin-3 and erythropoietin on in vivo erythropoiesis and F-cell formation in primates. Blood 74:1571-6.

  • Vajpayee N Graham SS Bem S. 2011. Basic examination of blood and bone marrow. In: McPherson RA Pincus M editors. Henry’s clinical diagnosis and management by laboratory methods. Philadelphia: Elsevier Saunders.

  • Valerio G Di Maio S Salerno M Argenziano A Badolato R Tenore A. 1997. Assessment of red blood cell indices in growth-hormone-treated children. Horm Res 47:62-6.

  • Vihervuori E Virtanen M Koistinen H Koistinen R Seppälä M Siimes MA. 1996. Hemoglobin level is linked to growth hormone- dependent proteins in short children. Blood 87:2075-81.

  • Wolański N. 2012. Rozwój biologiczny człowieka. Warszawa: Wydawnictwo Naukowe PWN.

Search
Journal information
Impact Factor


CiteScore 2018: 0.55

SCImago Journal Rank (SJR) 2018: 0.22
Source Normalized Impact per Paper (SNIP) 2018: 0.472

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 142 4
PDF Downloads 183 158 5