Microstructure and selected properties of boronized layers produced on C45 and CT90 steels after modification by diode laser

Open access

Abstract

The paper presents the study results of macro- and microstructure, microhardness and corrosion resistance of C45 medium carbon steel and CT90 high carbon steel after diffusion boriding and laser modification by diode laser. It was found that the increase of carbon content reduced the thickness of boronized layer and caused change in their morphology. Diffusion boronized layers were composed of FeB and Fe2B iron borides. As a result of laser surface modification of these layers, the microstructure composed of three areas: remelted zone, heat affected zone (HAZ) and the substrate was obtained. Microhardness of laser remelting boronized layer in comparison with diffusion boronized layer was lower. The presence of HAZ was advantageous, because mild microhardness gradient between the layer and the substrate was assured. The specimens with laser boronized layers were characterized by better corrosion resistance than specimens without modified layer.

[1] Przybyłowicz K., Teoria i praktyka borowania stali. Wyd. Politechniki Świętokrzyskiej, Kielce, 2000.

[2] Pertek A., The Structure Formation and the Properties of Boronized Layers Obtained in Gaseous Boriding Process, Dissertation no. 365, Publishing House of Poznan University of Technology, Poznan, 2001.

[3] Muhammad W., Boriding of high carbon high chromium cold work tool steel. IOP Conference Series: Materials Science and Engineering, 60 (2014) 1-6.

[4] Pertek A., Kapcińska-Popowska D., Bartkowska A., Wpływ borowania dyfuzyjnego na mikrostrukturę i wybrane właściwości stali konstrukcyjnej. Journal of Research and Applications in Agricultural Engineering, 1 (2013) 147-150.

[5] Uslu I., Comert H., Ipek M., Ozdemir O., Bindal C., Evaluation of borides formed on AISI P20 steel. Materials and Design, 28 (2007) 55 - 61.

[6] Calik A., Simsek M., Karakas M.S., Ucar N., Effect of boronizing on microhardness and wear resistance of steel AISI 1050 and chilled cast iron. Metal Science and Heat Treatment, 56 (2014) 89 - 92.

[7] Bartkowska A., Swadźba R., Popławski M., Bartkowski D.,Microstructure, microhardness, phase analysis and chemical composition of laser remelted FeB-Fe2B surfacelayersproducedon Vanadis-6 steel. Optics&LaserTechnology86(2016)115-125.

[8] Balandin Yu. A., Boronitriding of die steels in fluidized bed. Metal Science and Heat Treatment, 46 (2004) 385-387.

[9] Pertek A., Kulka M., Microstructure and properties of composite (B+C) diffusion layers on low-carbon steel. Journal of Materials Science, 38(2003) 269-273.

[10] Kusiński J., Kąc S, Kopia A., Radziszewski A, Rozmus- Górnikowska M., Major B., Major L., Marczak J., Lisiecki A., Laser modification of the materials surface layer - a review paper. Bulletin of the Polish Academy of Sciences Technical Science, 60 (2012) 711-724.

[11] Marimoto J., Ozaki T., Kubohori T. Marimoto S., Abe N., Tsukamoto M., Some properties of boronized layers on steels with direct diode laser. Vacuum, 83 (2009) 185-189.

[12] Pelletier J. M., Perque D., Fouquet F., Laser surface melting of low and medium carbon steels: influence on mechanical and electrochemical properties. Journal of materials science, 24 (1989) 4343-4349.

[13] Wang Z., Zhao Q., Wang Ch., Zhang Y., Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing. Applied Physics A, 119 (2015) 1155-1163.

[14] Elhamali S., Etmimi K, Usha A., The effect of laser surface melting on the microstructure and mechanical properties of low carbon steel. World Academy of Science, Engineering and Technology, 7 (2013) 373-375.

[15] Gopalakrishnan P., Shankar P., Subba Rao R.V., Sundar M., Ramakrishnan S. S., Laser surface modification of Low Carbon Borided Steels. Scripta Materialia, 44 (2001) 707-712.

[16] Grabas B., Najgeburska M., Wpływ temperatury i prędkości skanowaniana szerokość ścieżki zahartowanej wiązką laserową. Mechanik, 11 (2008) 951-953.

[17] Kąc S., Radziszewska A., Kusiński J., Struktura i właściwości stali HS6-5-2 po przetapianiu laserowym i konwencjonalnej obróbce cieplnej. Inżynieria Materiałowa, 5 (2005) 299-302.

[18] Yilbas B. S., Arif A. F. M., Karatas C., Akhtar S., Abdul Aleem B. J., Laser nitriding o tool steel: thermal stress analysis. International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-009-2467-z, Published online: 18 December 2009.

[19] Bartkowska A., Pertek-Owsianna A., Przestacki D., Hartowanie i borowanie laserowe stali konstrukcyjnej C45. Inżynieria Materiałowa 6(2013) 610-614.

[20] PN-EN ISO 6507-1, Metale, Pomiar twardości sposobem Vickersa. Część 1: Metoda badań. Warszawa, 2007.

[21] Kula P., Inżynieria warstwy wierzchniej. Wydawnictwo Politechniki Łódzkiej, Łódź 2000.

[22] PN-EN ISO 17475, Korozja metali i stopów, Elektrochemiczne metody badań, Wytyczne wykonania potencjostatycznych i potencjodynamicznych pomiarów polaryzacyjnych. Warszawa, 2010.

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 98 98 17
PDF Downloads 31 31 12