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LEFT DERIVABLE MAPS AT NON-TRIVIAL
IDEMPOTENTS ON NEST ALGEBRAS

Hoger Ghahramani, Saman Sattari

Abstract. Let AlgN be a nest algebra associated with the nest N on a (real
or complex) Banach space X. Suppose that there exists a non-trivial idempo-
tent P ∈ AlgN with range P (X) ∈ N , and δ : AlgN → AlgN is a continuous
linear mapping (generalized) left derivable at P , i.e. δ(ab) = aδ(b) + bδ(a)
(δ(ab) = aδ(b) + bδ(a) − baδ(I)) for any a, b ∈ AlgN with ab = P , where
I is the identity element of AlgN . We show that δ is a (generalized) Jordan
left derivation. Moreover, in a strongly operator topology we characterize con-
tinuous linear maps δ on some nest algebras AlgN with the property that
δ(P ) = 2Pδ(P ) or δ(P ) = 2Pδ(P )− Pδ(I) for every idempotent P in AlgN .

1. Introduction

Throughout this paper, all algebras and vector spaces will be over F, where
F is either the real field R or the complex field C. Let A be an algebra with
unity 1, M be a left A-module and δ : A → M be a linear mapping. The
mapping δ is said to be a left derivation (or a generalized left derivation) if
δ(ab) = aδ(b) + bδ(a) (or δ(ab) = aδ(b) + bδ(a) − baδ(1)) for all a, b ∈ A. It
is called a Jordan left derivation (or a generalized Jordan left derivation) if
δ(a2) = 2aδ(a) (or δ(a2) = 2aδ(a) − a2δ(1)) for any a ∈ A. Obviously, any
(generalized) left derivation is a (generalized) Jordan left derivation, but in
general the converse is not true (see [15, Example 1.1]). The concepts of left
derivation and Jordan left derivation were introduced by Brešar and Vukman
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in [4]. For results concerning left derivations and Jordan left derivations we
refer the readers to [10] and the references therein.

In recent years, several authors studied the linear (additive) maps that
behave like homomorphisms, derivations or left derivations when acting on
special products (for instance, see [3, 7, 9, 6, 11, 12, 16] and the references
therein). In this article we study the linear maps on nest algebras behaving
like left derivations at idempotent-product elements.

Let A be an algebra with unity 1,M be a left A-module and δ : A→M be a
linear mapping. We say that δ is left derivable (or generalized left derivable) at
a given point z ∈ A if δ(ab) = aδ(b)+ bδ(a) (or δ(ab) = aδ(b)+ bδ(a)− baδ(1))
for any a, b ∈ A with ab = z. In this paper, we characterize the continuous
linear maps on nest algebras which are (generalized) left derivable at a non-
trivial idempotent operator P . Moreover, in a strongly operator topology we
describe continuous linear maps δ on some nest algebra AlgN with the pro-
perty that δ(P ) = 2Pδ(P ) or δ(P ) = 2Pδ(P ) − Pδ(I) for every idempotent
P in AlgN , where I is the identity element of AlgN .

The following are the notations and terminologies which are used through-
out this article.

Let X be a Banach space. We denote by B(X) the algebra of all bounded
linear operators on X, and F(X) denotes the algebra of all finite rank operators
in B(X). A subspace lattice L on a Banach space X is a collection of closed
(under norm topology) subspaces of X which is closed under the formation
of arbitrary intersection and closed linear span (denoted by ∨), and which
includes {0} and X. For a subspace lattice L, we define AlgL by

AlgL = {T ∈ B(X) |T (N) ⊆ N for allN ∈ L}.

A totally ordered subspace lattice N on X is called a nest and AlgN is called
a nest algebra. When N 6= {{0},X}, we say that N is non-trivial. It is clear
that if N is trivial, then AlgN = B(X). Denote AlgF N := AlgN ∩ F(X),
the set of all finite rank operators in AlgN and for N ∈ N , let N− = ∨{M ∈
N |M ⊂ N}. The identity element of a nest algebra will be denoted by I.
An element P in a nest algebra is called a non-trivial idempotent if P 6= 0, I
and P 2 = P .

Let N be a non-trivial nest on a Banach space X. If there exists a non-
trivial idempotent P ∈ AlgN with range P (X) ∈ N , then we have (I −
P )(AlgN )P = {0} and hence

AlgN = P (AlgN )P +̇P (AlgN )(I − P )+̇(I − P )(AlgN )(I − P )

as sum of linear spaces. This is so-called Peirce decomposition of AlgN . The
sets P (AlgN )P , P (AlgN )(I − P ) and (I − P )(AlgN )(I − P ) are closed
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in AlgN . In fact, P (AlgN )P and (I − P )(AlgN )(I − P ) are Banach sub-
algebras of AlgN whose unit elements are P and I − P , respectively and
P (AlgN )(I−P ) is a Banach (P (AlgN )P, (I−P )(AlgN )(I−P ))-bimodule.
Also P (AlgN )(I − P ) is faithful as a left P (AlgN )P -module as well as a
right (I − P )(AlgN )(I − P )-module. For more information on nest algebras,
we refer to [5].

A subspace lattice L on a Hilbert space H is called a commutative subspace
lattice, or a CSL, if the projections of H onto the subspaces of L commute
with each other. If L is a CSL, then AlgL is called a CSL algebra. Each nest
algebra on a Hilbert space is a CSL-algebra.

2. Main results

In order to prove our results we need the following result.

Theorem 2.1 ([8]). Let A be a Banach algebra with unity 1, X be a Banach
space and let φ : A × A → X be a continuous bilinear map with the property
that

a, b ∈ A, ab = 1⇒ φ(a, b) = φ(1, 1).

Then

φ(a, a) = φ(a2, 1)

for all a ∈ A.

Proposition 2.2. Let A be a Banach algebra with unity 1, and M be a
unital Banach left A-module. Let δ : A→ M be a continuous linear map. If δ
is left derivable at 1, then δ is a Jordan left derivation.

Proof. Since 1 ·1 = 1, it follows that δ(1) = 2δ(1) and therefore δ(1) = 0.
Define a continuous bilinear map φ : A × A → M by φ(a, b) = aδ(b) + bδ(a).
Then φ(a, b) = φ(1, 1) for all a, b ∈ A with ab = 1, since δ is left derivable at
1. By applying Theorem 2.1, we obtain φ(a, a) = φ(a2, 1) for all a ∈ A. So,

δ(a2) = 2aδ(a) (a ∈ A). �
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Corollary 2.3. Let A be a Banach algebra with unity 1, and M be a
unital Banach left A-module. Let x, y ∈ A with x+y = 1 and let δ : A→M be
a continuous linear map. If δ is left derivable at x and y, then δ is a Jordan
left derivation.

Proof. For a, b ∈ A with ab = 1, we have abx = x and aby = y. Since δ
is left derivable at x and y, it follows that

δ(x) = δ(abx) = aδ(bx) + bxδ(a)

and

δ(y) = δ(aby) = aδ(by) + byδ(a).

Combining the two above equations, we get that

δ(1) = δ(x+ y) = aδ(bx) + bxδ(a) + aδ(by) + byδ(a) = aδ(b) + bδ(a),

i.e. δ is left derivable at 1. It follows from Proposition 2.2 that δ is a Jordan
left derivation. �

Remark 2.4. If A is a CSL-algebra or a unital semisimple Banach algebra,
then by [12] and [14] every continuous Jordan left derivation on A is zero.
Hence it follows from Proposition 2.2 that every continuous linear map δ : A→
A which is left derivable at 1 is zero.

The following is our main result.

Theorem 2.5. Let N be a nest on a Banach space X such that there ex-
ists non-trivial idempotent P ∈ AlgN with range P (X) ∈ N . If δ : AlgN →
AlgN is a continuous left derivable map at P , then δ is a Jordan left deriva-
tion.

Proof. For a notational convenience, we denote A = AlgN , A11 = PAP ,
A12 = PA(I−P ) and A22 = (I−P )A(I−P ). As mentioned in the introduction
A = A11+̇A12+̇A22. Throughout the proof, aij and bij will denote arbitrary
elements in Aij for 1 ≤ i, j ≤ 2.

First we show that δ(P ) = 0. Since P 2 = P , we have 2Pδ(P ) = δ(P ).
It follows from equation 2Pδ(P ) = δ(P ) that Pδ(P ) = 0 and it implies that
δ(P ) = 0.

We complete the proof by verifying the following steps.
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Step 1. Pδ(a211)P = 2a11Pδ(a11)P and Pδ(a211)(I−P ) = 2a11Pδ(a11)(I−P ).
For any a11, b11 with a11b11 = P , we have

(2.1) a11δ(b11) + b11δ(a11) = δ(P ).

Multiplying this identity by P both from the left and from the right, we find

a11Pδ(b11)P + b11Pδ(a11)P = Pδ(P )P (a11b11 = P ).

Define a continuous linear map d : A11 → A11 by d(a11) = Pδ(a11)P . By
above identity d is left derivable at P . Hence by Proposition 2.2, d is a Jordan
left derivation, which implies

Pδ(a211)P = 2a11Pδ(a11)P (a11 ∈ A11).

By multiplying (2.1) by P from the left and by (I − P ) from the right, we
arrive at

a11Pδ(b11)(I − P ) + b11Pδ(a11)(I − P ) = Pδ(P )(I − P ) (a11b11 = P ).

Define a continuous linear map D : A11 → A12 by D(a11) = Pδ(a11)(I − P ).
It is easy to see that D is a left derivable at P . It follows from Proposition 2.2
that D is a Jordan left derivation. Thus,

Pδ(a211)(I − P ) = 2a11Pδ(a11)(I − P ) (a11 ∈ A11).

Step 2. Pδ(a22) = 0.
Since (P + a22)P = P , we have

(P + a22)δ(P ) + Pδ(P + a22) = δ(P ).

From δ(P ) = 0 we get

Pδ(a22) = 0.

Step 3. Pδ(a12) = 0.
Applying δ to (P + a12)P = P , we get

(P + a12)δ(P ) + Pδ(P + a12) = δ(P ).

Since δ(P ) = 0, it follows that

Pδ(a12) = 0.
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Step 4. (I − P )δ(a11)(I − P ) = 0.
For any a11, b11 with b11a11 = P , we have (I −P + b11)a11 = P and hence

(I − P + b11)δ(a11) + a11δ(I − P + b11) = δ(P ).

Multiplying this identity by I − P both from the left and from the right we
arrive at

(I − P )δ(a11)(I − P ) = 0.

Since any element in a Banach algebra with unit element is a sum of its
invertible elements ([1]), by the linearity of δ and above identity we have

(I − P )δ(a11)(I − P ) = 0

for all a11 ∈ A11.

Step 5. (I − P )δ(a12)(I − P ) = 0.
Since (P − a12)(I + a12) = P , it follows that

(P − a12)δ(I + a12) + (I + a12)δ(P − a12) = δ(P ).

Multiplying this identity by I − P both from the left and from the right and
using the fact that δ(P ) = 0, we find

(I − P )δ(a12)(I − P ) = 0.

Step 6. (I − P )δ(a22)(I − P ) = 0.
Applying δ to (P + a12)(P − a12a22 + a22) = P , we see that

(P + a12)δ(P − a12a22 + a22) + (P − a12a22 + a22)δ(P + a12) = δ(P ).

Now, multiplying this identity from the left by P , from the right by I−P and
by Steps 2,3 and 5 and the fact that δ(P ) = 0, we get a12(I−P )δ(a22)(I−P ) =
0. Since a12 ∈ A12 is arbitrary, we have A12((I−P )δ(a22)(I−P )) = {0}. From
the fact that A12 is faithful as right A22-module, we arrive at

(I − P )δ(a22)(I − P ) = 0.

Since ab = PaPbP + PaPb(I − P ) + Pa(I − P )b(I − P ) + (I − P )a(I −
P )b(I − P ), for any a, b ∈ A, by Steps 1–6, it follows that δ is a Jordan left
derivation. �
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Our next result characterizes the linear mappings on AlgN which are
generalized left derivable at P .

Theorem 2.6. Let N be a nest on a Banach space X such that there exists
a non-trivial idempotent P ∈ AlgN with range P (X) ∈ N . If δ : AlgN →
AlgN is a continuous generalized left derivable map at P , then δ is a gener-
alized Jordan left derivation.

Proof. Define ∆: AlgN → AlgN by ∆(a) = δ(a) − aδ(1). It is easy to
see that ∆ is a continuous left derivable map at P . By Theorem 2.5, ∆ is a
Jordan left derivation. Therefore

δ(a2) = ∆(a2) + a2δ(1)

= 2a∆(a) + a2δ(1)

= 2a(δ(a)− aδ(1)) + a2δ(1)

= 2aδ(a)− a2δ(1)

for all a ∈ AlgN . So δ is a generalized Jordan left derivation. �

Since every continuous Jordan left derivation on a CSL algebra is zero ([12]),
we have the following result.

Corollary 2.7. Let N be a non-trivial nest on a Hilbert space H. Let P
be a non-trivial idempotent in AlgN with range P (H) ∈ N and δ : AlgN →
AlgN be a continuous linear map.
(i) If δ is left derivable at P , then δ is zero.
(ii) If δ is generalized left derivable at P , then δ(a) = aδ(1) for all a ∈ AlgN .

Proof. (i) Since every continuous Jordan left derivation on a CSL algebra
is zero ([12]), by Theorem 2.5, δ is zero.
(ii) By Theorem 2.6, δ is a generalized Jordan left derivation, so the mapping
∆: AlgN → AlgN defined by ∆(a) = δ(a) − aδ(1) is a continuous Jordan
left derivation. Therefore ∆ = 0 and hence δ(a) = aδ(1) for all a ∈ AlgN . �

Now, we characterize (generalized) left Jordan derivations which are con-
tinuous in the strongly operator topology, but in order to prove our result
we must assume an additional (mild) condition concerning the nest N . At
present we have no counter-example, so it remains an open problem if this
additional condition can be omitted.

The idea of the proof of Proposition 2.8 (i) comes from [2].
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Proposition 2.8. Let N be a nest on a Banach space X, with each N ∈ N
complemented in X whenever N− = N . Let δ : AlgN → AlgN be a continuous
linear map in a strong operator topology.
(i) If δ(P ) = 2Pδ(P ) for every idempotent P in AlgN , then δ = 0.
(ii) If δ(P ) = 2Pδ(P )−Pδ(I) for every idempotent P in AlgN , then δ(a) =

aδ(I) for all a ∈ AlgN .

Proof. (i) For arbitrary idempotent operator P ∈ AlgN , by hypothe-
sis we have δ(P ) = 2Pδ(P ). It follows from equation 2Pδ(P ) = δ(P ) that
Pδ(P ) = 0 and it implies that δ(P ) = 0.

Notice that AlgF N is contained in the linear span of the idempotents
in AlgN (see [11]), which implies that δ(F ) = 0 for all finite rank operator
F in AlgN . Since δ is continuous under the strong operator topology and
AlgF N

SOT
= AlgN (see [13]), we find that δ(a) = 0 for all a ∈ AlgN .

(ii) Define ∆: AlgN → AlgN by ∆(a) = δ(a) − aδ(I). It is easy to
see that ∆ is a continuous left map satisfying ∆(P ) = 2P∆(P ) for every
idempotent P in AlgN . So by (i) we have ∆ = 0 and hence δ(a) = aδ(I) for
all a ∈ AlgN . �

It is obvious that the nests on Hilbert spaces, finite nests and the nests
having order-type ω + 1 or 1 + ω∗, where ω is the order-type of the natural
numbers, satisfy the condition in Proposition 2.8 automatically.
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